# 10.11: K- Useful Formulas

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Isothermal compressibility:

$$\kappa_{T}=-\frac{1}{V} \frac{\partial V}{\partial p} )_{T, N}=\frac{1}{\rho} \frac{\partial \rho}{\partial p} )_{T}=\frac{1}{\rho^{2}} \frac{\partial^{2} p}{\partial \mu^{2}} )_{T}$$

Master thermodynamic equation:

$$d F=-S d T-p d V-M d H+\sum_{i} \mu_{i} d N_{i}$$

Gibbs-Helmholtz equation:

$$E(T, V, N)=\frac{\partial(F / T)}{\partial(1 / T)} )_{V, N}=-\frac{\partial \ln Z}{\partial \beta} )_{V, N}$$

Free energy from partition function:

$$F(T, V, N)=-k_{B} T \ln Z(T, V, N)$$

Classical pure point-particle partition function:

$$Z(T, V, N)=\frac{1}{h^{3 N} N !} \int d^{3 N} p \int d^{3 N} r e^{-H(r, p) / k_{B} T}$$

$$Z(T, V, N)=\frac{1}{\lambda^{3 N}(T)} \int d^{3 N} r e^{-U(r) / k_{B} T} \quad \text { where } \quad \lambda(T)=\frac{h}{\sqrt{2 \pi m k_{B} T}}$$

Quantal ideal gases (+ for fermions, − for bosons):

$$\Xi(\beta, \mu)=\prod_{r=1}^{M}\left[1 \pm e^{-\beta\left(\epsilon_{r}-\mu\right)}\right]^{ \pm 1}$$

$$\left\langle n_{r}\right\rangle=\frac{1}{e^{\beta\left(\epsilon_{r}-\mu\right)} \pm 1}$$

10.11: K- Useful Formulas is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.