4.5: A Solution of the Heat Conduction Equation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Methods of solving the heat conduction equation are commonly given in courses on partial differential equations. Here we shall look at a simple one-dimensional example.

A long copper bar is initially at a uniform temperature of 0 oC. At time t = 0, the left hand end of it is heated to 100 oC. Draw graphs of temperature versus distance x from the hot end of the bar (up to x = 100 cm) at t = 4, 16, 64, 256 and 1024 seconds. Draw also a graph of temperature versus time at x = 5 cm, up to 1024 seconds. Assume no heat is lost from the sides of the bar.

Data for copper:

K = 400 W m−1 K−1

C = 395 J kg−1 K−1

ρ = 8900 kg m−3

whence

D = 1.137 × 10−4 m2 s−1

The equation to be solved is

$D \frac{\partial ^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$

From the form of this equation, it is obvious (once it has been pointed out!) that a solution could be found in which T(x, t) is solely a function of x2/t, or, for that matter, x/t1/2. Thus, let

$u = x/t^{1/2},$

and you will see that equation 4.4.1 reduces to the second order total differential equation

$D \frac{d^2T}{du^2} = - \frac{u}{2} \frac{dT}{du}.$

Let T' = dT/du, and it becomes even easier − a first order equation:

$D \frac{dT'}{du} = - \frac{1}{2} uT'.$

Upon integration, we obtain

$\ln T' = - \frac{u^2}{4D} + \ln A,$

where ln A is an integration constant, to be determined by the initial and boundary conditions. (What are the dimensions of A?)

That is,

$T' = A \text{exp} \left[ -u^2 /(4D) \right].$

We have to integrate again, with respect to u:

$T = A \int \text{exp} \left[ - u^2/(4D) \right] du.$

Now, T = 100 oC at x = 0 for any t > 0. That is, T = 100 for u = 0.

And T = 0 oC at t = 0 for any x > 0. That is, T = 0 for u = ∞.

Therefore

$100 - 0 = A \int_{ \infty}^0 \text{exp} \left[ -u^2 /(4D) \right] du.$

The integral is slightly difficult though well known. I'll just state the answer here; it is $$- \sqrt{ \pi D}$$. From this, we find that the integration constant is

$A = -5284 \text{K m}^{-1} \text{s}^{1/2}.$

We now have

$100 - T (x,~t) = A \int_{xt^{-1/2}}^0 \text{exp} \left[ -u^2 /(4D) \right] du.$

The error function erf(r) is defined by

$\text{erf} (r) = \frac{2}{ \sqrt{ \pi}} \int_0^r \text{exp} (-s^2)ds,$

so that equation 4.4.10 can be written

$T (x,~t) = 100 + A \sqrt{ \pi D} \text{erf} \left( \frac{x}{ 2 \sqrt{Dt}} \right) = 100 \left[ 1 - \text{erf} \left( \frac{x}{2 \sqrt{Dt}} \right) \right].$

This function is easy to plot provided that your computer will give you the erf function. The solutions are shown in figures IV.4 and 5.

This page titled 4.5: A Solution of the Heat Conduction Equation is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.