# 7.1: The Problem

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## 7.1 The harmonic Hamiltonian

The Hamiltonian for lattice vibrations, in the harmonic approximation, is

$\mathcal{H}=\frac{1}{2} \sum_{i=1}^{3 N} m_{i} \dot{x}_{i}^{2}+\frac{1}{2} \sum_{i=1}^{3 N} \sum_{j=1}^{3 N} x_{i} A_{i j} x_{j}.$

Notice that this Hamiltonian allows the possibility that atoms at different lattice sites might have different masses. Accept the fact that any real symmetric matrix S can be diagonalized through an orthogonal transformation, i.e. that for any such S there exists a matrix B whose inverse is its transpose and such that

$\mathrm{BSB}^{-1}$

is diagonal. Show that the Hamiltonian can be cast into the form

$\mathcal{H}=\frac{1}{2} \sum_{r=1}^{3 N}\left(\dot{q}_{r}^{2}+D_{r} q_{r}^{2}\right)$

by a linear change of variables. (Clue: As a first step, introduce the change of variable $$z_{i}=\sqrt{m_{i}} x_{i}$$.)

This page titled 7.1: The Problem is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.