4.A: Capacitance (Answers)
( \newcommand{\kernel}{\mathrm{null}\,}\)
selected template will load here
This action is not available.
( \newcommand{\kernel}{\mathrm{null}\,}\)
8.1. 1.1×10−3m
8.3. 3.59 cm, 17.98 cm
8.4. a. 25.0 pF;
b. 9.2
8.5. a. C=0.86pF,Q1=10pC,Q2=3.4pC,Q3=6.8pC;
b. C=2.3pF,Q1=12pC,Q2=Q3=16pC;
c. C=2.3pF,Q1=9.0pC,Q2=18pC,Q3=12pC,Q4=15pC
8.6. a.4.0×10−13J; b. 9 times
8.7. a. 3.0; b. C=3.0C0
8.9. a. C0=20pF,C=42pF;
b. Q0=0.8nC,Q=1.7nC;
c. V0=V=40V; d. U0=16nJ,U=34nJ
1. no; yes
3. false
5. no
7. 3.0μF,0.33μF
9. answers may vary
11. Dielectric strength is a critical value of an electrical field above which an insulator starts to conduct; a dielectric constant is the ratio of the electrical field in vacuum to the net electrical field in a material.
13. Water is a good solvent.
15. When energy of thermal motion is large (high temperature), an electrical field must be large too in order to keep electric dipoles aligned with it.
17. answers may vary
19. 21.6 mC
21. 1.55 V
23. 25.0 nF
25. 1.1×10−3m2
27. 500 µC
29. 1:16
31. a. 1.07 nC;
b. 267 V, 133 V
33. 0.29μF
34. 500 capacitors; connected in parallel
35. 3.08μF (series) and 13.0μ (parallel)
37. 11.4μF
39. 0.89 mC; 1.78 mC; 444 V
41. 7.5μJ
43. a. 405 J; b. 90.0 mC
45. 1.15 J
47. a. 4.43×10−9F;
b. 0.453 V;
c. 4.53×10−10J;
d. no
49. 0.7 mJ
51. a. 7.1 pF;
b. 42 pF
53. a. before 3.00 V; after 0.600 V;
b. before 1500 V/m; after 300 V/m
55. a. 3.91;
b. 22.8 V
57. a. 37 nC;
b. 0.4 MV/m;
c. 19 nC
59. a. 4.4μF;
b. 4.0×10−5C
61. 0.0135m2
63. 0.185μJ
65. a. 0.277 nF;
b. 27.7 nC;
c. 50 kV/m
67. a. 0.065 F;
b. 23,000 C;
c. 4.0 GJ
69. a. 75.6μC; b. 10.8 V
71. a. 0.13 J;
b. no, because of resistive heating in connecting wires that is always present, but the circuit schematic does not indicate resistors
73. a. −3.00μF;
b. You cannot have a negative C2 capacitance.
c. The assumption that they were hooked up in parallel, rather than in series, is incorrect. A parallel connection always produces a greater capacitance, while here a smaller capacitance was assumed. This could only happen if the capacitors are connected in series.
75. a. 14.2 kV;
b. The voltage is unreasonably large, more than 100 times the breakdown voltage of nylon.
c. The assumed charge is unreasonably large and cannot be stored in a capacitor of these dimensions.
77. a. 89.6 pF;
b. 6.09 kV/m;
c. 4.47 kV/m;
d. no
79. a. 421 J;
b. 53.9 mF
81. C=ε0A/(d1+d2)
83. proof
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).