Skip to main content
Physics LibreTexts

56.5: Vincenty’s Formulæ- Direct Problem

  • Page ID
    92358
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In the direct problem, we're given the latitude \(\phi_{1}\) (north positive) and longitude \(L_{1}\) (east positive) of one point on the Earth's surface; a distance \(s\); and a direction \(\alpha_{1}\) (measured clockwise from north). The goal of the direct problem is to find the latitude \(\phi_{2}\) and longitude \(L_{2}\) of the point you would reach by starting at ( \(\phi_{1}, L_{1}\) ) and traveling a distance \(s\) in the direction \(\alpha_{1}\).

    We're also given the following constants that define the size and shape of the Earth ellipsoid:\({ }^{1}\)

    • Earth ellipsoid semi-major axis (i.e. equatorial radius): \(a=6378137.0\) meters.
    • Earth flattening factor \(f=1 / 298.257223563\). This is defined as the difference between semi-major and semi-minor axes, divided by the semi-major axis: \(f=(a-b) / a\).

    We begin by finding the semi-minor axis \(b\) of the Earth's ellipsoid:

    \[b=(1-f) a .\]

    Then calculate the following, step by step, working with all angles in radians:

    \[
    \begin{align}
    \tan U_{1}=(1-f) \tan \phi_{1} \\[8pt]
    U_{1}=\tan ^{-1}\left(\tan U_{1}\right) \\[8pt]
    \sigma_{1}=\arctan \left(\frac{\tan U_{1}}{\cos \alpha_{1}}\right) \\[8pt]
    \sin \alpha=\cos U_{1} \sin \alpha_{1} \\[8pt]
    \cos ^{2} \alpha=(1-\sin \alpha)(1+\sin \alpha) \\[8pt]
    u^{2}=\left(\cos ^{2} \alpha\right)\left(\frac{a^{2}-b^{2}}{b^{2}}\right)
    \end{align}
    \]

    \[
    \begin{align}
    A=1+\frac{u^2}{16384}\left\{4096+u^2\left[-768+u^2\left(320-175 u^2\right)\right]\right\} \\[8pt]
    B=\frac{u^2}{1024}\left\{256+u^2\left[-128+u^2\left(74-47 u^2\right)\right]\right\}
    \end{align}
    \]

    Then, using an initial value \(\sigma=s / b A\), iterate Eqs. \(\PageIndex{10}\) through \(\PageIndex{12}\) until there is no significant change in \(\sigma\) :

    \[2 \sigma_{m}=2 \sigma_{1}+\sigma\]

    \[\Delta \sigma=B \sin \sigma\left\{\cos \left(2 \sigma_{m}\right)+\frac{1}{4} B\left[\cos \sigma\left(-1+2 \cos ^{2}\left(2 \sigma_{m}\right)\right)-\frac{1}{6} B \cos \left(2 \sigma_{m}\right)\left(-3+4 \sin ^{2} \sigma\right)\left(-3+4 \cos ^{2}\left(2 \sigma_{m}\right)\right)\right]\right\}\]

    \[\sigma=\frac{s}{b A}+\Delta \sigma\]

    Once \(\sigma\) is obtained to sufficient accuracy, calculate:

    \[
    \begin{align}
    & \phi_{2}=\arctan \left(\frac{\sin U_{1} \cos \sigma+\cos U_{1} \sin \sigma \cos \alpha_{1}}{(1-f) \sqrt{\sin ^{2} \alpha+\left(\sin U_{1} \sin \sigma-\cos U_{1} \cos \sigma \cos \alpha_{1}\right)^{2}}}\right) \\ \notag\\
    & \lambda=\arctan \left(\frac{\sin \sigma \sin \alpha_{1}}{\cos U_{1} \cos \sigma-\sin U_{1} \sin \sigma \cos \alpha_{1}}\right) \\ \notag\\
    & C=\frac{f}{16} \cos ^{2} \alpha\left[4+f\left(4-3 \cos ^{2} \alpha\right)\right] \\ \notag\\
    & L=\lambda-(1-C) f \sin \alpha\left\{\sigma+C \sin \sigma\left[\cos \left(2 \sigma_{m}\right)+C \cos \sigma\left(-1+2 \cos ^{2}\left(2 \sigma_{m}\right)\right)\right]\right\} \\ \notag\\
    & L_{2}=L_{1}+L \\ \notag\\
    & \alpha_{2}=\arctan \left(\frac{\sin \alpha}{-\sin U_{1} \sin \sigma+\cos U_{1} \cos \sigma \cos \alpha_{1}}\right)
    \end{align}
    \]

    Then \(\left(\phi_{2}, L_{2}\right)\) are the latitude and longitude of the ending point (in radians).

    Example \(\PageIndex{1}\)

    If you travel exactly 1000 miles northwest of the sounding rocket in Chesapeake Hall at Prince George's Community College ( \(38^{\circ} 53^{\prime} 17.62^{\prime \prime} \mathrm{N}, 76^{\circ} 49^{\prime} 23.40^{\prime \prime} \mathrm{W}\) ), where do you end up? (Give the answer as latitude, longitude, and describe the location.)

    Solution

    The coordinates of Chesapeake Hall are: \(\phi_{1}=+38.888228^{\circ}, L_{1}=-76.823167^{\circ}\). The given distance is 1000 miles \(=1609.344 \mathrm{~km}\), and the given azimuth \(\alpha_{1}=315^{\circ}\). Employing Vincenty's formulæ (direct method), we find:

    \(b =6356752.3 \text { meters } \)
    \(U_{1} =38.794230^{\circ} \)
    \(\sigma_{1} =48.663693^{\circ} \)
    \(\cos ^{2} \alpha =0.696266995365 \)
    \(u^{2} =0.0046924891470 \)
    \(A =1.0011720921377 \)
    \(B =0.0011703772996 \)
    \(\sigma =14.482402^{\circ} \)
    \(\phi_{2} =48.206878^{\circ} \)
    \(\lambda =-15.357896^{\circ} \)
    \(C =5.84547783404 \times 10^{-4} \)
    \(L =-15.331156^{\circ} \)
    \(L_{2} =-92.154324^{\circ}\)

    Hence the ending point is at latitude \(48^{\circ} 12^{\prime} 24.76^{\prime \prime} \mathrm{N}\), longitude \(92^{\circ} 09^{\circ} 15.56^{\prime \prime} \mathrm{W}\). This is in northern Minnesota (St. Louis county), within Superior National Forest, just a few miles south of the Canadian border.


    \({ }^{1}\) These are the values used for the WGS-84 ellipsoid, used by GPS receivers.


    56.5: Vincenty’s Formulæ- Direct Problem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?