Skip to main content
Physics LibreTexts

9: Magnetism

  • Page ID
    47060
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Magnetism is a class of physical phenomena that are mediated by magnetic fields. Electric currents and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other currents and magnetic moments. Every material is influenced to some extent by a magnetic field.

    • 9.1: Prelude to Magnetism
      Magnetism is used to explain atomic energy levels, cosmic rays, and charged particles trapped in the Van Allen belts. Once again, we will find all these disparate phenomena are linked by a small number of underlying physical principles.
    • 9.2: Magnets
      Magnetism is a subject that includes the properties of magnets, the effect of the magnetic force on moving charges and currents, and the creation of magnetic fields by currents. There are two types of magnetic poles, called the north magnetic pole and south magnetic pole. North magnetic poles are those that are attracted toward the Earth’s geographic north pole. Like poles repel and unlike poles attract. Magnetic poles always occur in pairs of north and south.
    • 9.3: Ferromagnets and Electromagnets
      All magnetism is created by electric current. Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects. The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in millimeter-sized regions called domains. Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be magnetic.
    • 9.4: Magnetic Fields and Magnetic Field Lines
      Magnetic fields can be pictorially represented by magnetic field lines, the properties of which are as follows: The field is tangent to the magnetic field line. Field strength is proportional to the line density. Field lines cannot cross. Field lines are continuous loops.
    • 9.5: Magnetic Field Strength- Force on a Moving Charge in a Magnetic Field
      Magnetic fields exert a force on a moving charge q. The SI unit for magnetic field strength B is the tesla (T). The direction of the force on a moving charge is given by right hand rule 1: Point the thumb of the right hand in the direction of v, the fingers in the direction of B, and a perpendicular to the palm points in the direction of F. The force is perpendicular to the plane formed by \(mathbf{v}\) and \mathbf{B}.
    • 9.6: Magnetic Force on a Current-Carrying Conductor
      The magnetic force on current-carrying conductors is given by \[F = \pi B sin \theta,\] where \(\) is the current, \(l\)  is the length of a straight conductor in a uniform magnetic field \(B\), and \(\theta\) is the angle between \(I\) and \(B\).  The force follows RHR-1 with the thumb in the direction of \(I\).\

    Thumbnail: Magnetic field of an ideal cylindrical magnet with its axis of symmetry inside the image plane. The magnetic field is represented by magnetic field lines, which show the direction of the field at different points. (CC-SA-BY-3.0; Geek3).

    Contributors and Attributions

    • Paul Peter Urone (Professor Emeritus at California State University, Sacramento) and Roger Hinrichs (State University of New York, College at Oswego) with Contributing Authors: Kim Dirks (University of Auckland) and Manjula Sharma (University of Sydney). This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).


    This page titled 9: Magnetism is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?