Multi-choice questions
- Page ID
- 105500
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Multi-choice Quiz Module 6
1. Which of the following sentences is false in linear polarization?
a. In linear polarization, the component of the electric field rotates at a constant rate
b. In linear polarization, the electric field oscillates in a single direction
c. A linear polarization state can be represented as the superposition of right-hand circular polarization and left-hand circular polarization.
2. Which one of the following sentences is false about natural light?
a. Natural light refers to light with an orientation of the electric field that changes randomly in space and time.
b. Natural light can be represented as the superposition of two equal-amplitude, incoherent orthogonal linear polarization states.
c. If natural light is incident on a linear polarizer, the intensity of the transmitted light depends on the angle of the linear polarizer.
3. Fill the gap. Polarizers are polarization elements that reduce the incident intensity by half if the input light is ________________
a. Polarized light
b. Incoherent light
c. Coherent light
d. Natural light
4. A linearly-polarized beam along the horizontal direction (i.e., 90 deg from the vertical) impacts a linear polarizer whose transmission axis is vertical. What is the intensity of the transmitted beam if the incident beam has an intensity of 100 W/m2?
a. 100 W/m2
b. 0 W/m2
c. 50 W/m2
5. A beam of natural light with an intensity of 500W/m2 impinges consecutively on two ideal linear polarizers. How apart are the transmission axes of the two polarizers if the intensity of the transmitted light is reduced to 250 W/m2?
a. We do not have enough information to estimate the angle between both polarizers.
b. Their transmission axes are separated 0 deg.
c. Their transmission axes are separated 90 deg.
6. A beam of natural light with an intensity of 500W/m2 impinges consecutively on two ideal linear polarizers. How apart are the transmission axes of the two polarizers if the intensity of the transmitted light is reduced to 0 W/m2?
a. We do not have enough information to estimate the angle between both polarizers.
b. Their transmission axes are separated 0 deg.
c. Their transmission axes are separated 90 deg.
7. Considering that you have two optical polarizers. Both polarizers are localized in tandem and the angle between them is 45 degrees. If the incident light is natural light, which one is the ratio between the incident intensity I0 at the first polarizer and the transmitted light I2 after passing through both polarizers?
a. I2 = I0
b. 2I2 = I0
c. There is not enough information
d. 4I2 = I0
8. True/False. Retarders are polarization elements that advance or retard the phase of one of the two orthogonal components of E-field by some desired amount.
a. True
b. False
9. A light with a horizontal linear polarization state passes a half-wave retarder. Select the correct polarization state of the transmitted light.
a. Vertical linear polarization state
b. Horizontal linear polarization state
c. No light is transmitted.
d. It depends on the orientation of the retarder’s fast axis
10. A beam of light is characterized by a Jones Vector, \(\mathbf{E} = \frac{1}{\sqrt{13}} \begin{pmatrix} 3 \\ 2 \end{pmatrix}\). Which of the following Jones vectors do not represent its orthogonal polarization state?
a. \(\mathbf{E} = \frac{1}{\sqrt{13}} \begin{pmatrix} 2 \\ -3 \end{pmatrix}\)
b. \(\mathbf{E} = \frac{1}{\sqrt{13}} \begin{pmatrix} -4 \\ 6 \end{pmatrix}\)
c. \(\mathbf{E} = \frac{1}{\sqrt{13}} \begin{pmatrix} 2 \\ 3 \end{pmatrix}\)
11. You need left-hand circular polarized (LCP) light in your system. However, unfortunately, you just dropped your only LCP polarizer and it is now broken. Looking around in the lab, you find a quarter wave plate (QWP) and some linear polarizers. Select the correct angle of the transmission angle of the linear polarizer (LP) that you should insert before the QWP so that the system produces LHCP from natural light?
a. LP@45°
b. LP@-45°
c. LP@ 90 deg
d. LP @ 0 deg
12. Natural light impinges on a horizontal polarizer, passes through a half-wave plate whose fast axis is 0 degrees with respect to the horizontal axis, and then impinges on another polarizer set at 30° from the vertical. What percent of the initial light will remain?
a. 75%
b. 50%
c. 25%
d. Almost 13%
13. Two incoherent light beams with Stokes parameters {2, -1, 0, 0} and {2, 2, 1, 3}, respectively, superimposed upon each other. What are the resulting Stokes parameters and the degree of polarization?
a. {4, 1, 1, 3} with degree of polarization = 0.8292
b. {1, -2, 0, 0} with degree of polarization = 2
c. {2, 1, 1, 3} with degree of polarization = 1.6583
d. {1, -2, 0, 0} with degree of polarization = 4