Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 13 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/06%3A_Resistive_Networks/6.07%3A_Circuits_Bioelectricity_and_DC_Instruments/6.7.04%3A_Kirchhoffs_Rules
      Many complex circuits cannot be analyzed with the series-parallel techniques developed previously. There are, however, two circuit analysis rules that can be used to analyze any circuit, simple or com...Many complex circuits cannot be analyzed with the series-parallel techniques developed previously. There are, however, two circuit analysis rules that can be used to analyze any circuit, simple or complex. These rules are special cases of the laws of conservation of charge and conservation of energy. The rules are known as Kirchhoff’s rules, after their inventor Gustav Kirchhoff (1824–1887).
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
      Figure \(\PageIndex{5}\): Each of these resistors and voltage sources is traversed from a to b. (a) When moving across a resistor in the same direction as the current flow, subtract the potential drop...Figure \(\PageIndex{5}\): Each of these resistors and voltage sources is traversed from a to b. (a) When moving across a resistor in the same direction as the current flow, subtract the potential drop. (b) When moving across a resistor in the opposite direction as the current flow, add the potential drop. (c) When moving across a voltage source from the negative terminal to the positive terminal, add the potential drop. (d) When moving across a voltage source from the positive terminal to the n…
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/21%3A_Circuits_Bioelectricity_and_DC_Instruments/21.03%3A_Kirchhoffs_Rules
      Many complex circuits cannot be analyzed with the series-parallel techniques developed previously. There are, however, two circuit analysis rules that can be used to analyze any circuit, simple or com...Many complex circuits cannot be analyzed with the series-parallel techniques developed previously. There are, however, two circuit analysis rules that can be used to analyze any circuit, simple or complex. These rules are special cases of the laws of conservation of charge and conservation of energy. The rules are known as Kirchhoff’s rules, after their inventor Gustav Kirchhoff (1824–1887).
    • https://phys.libretexts.org/Courses/Joliet_Junior_College/PHYS202_-_JJC_-_Testing/12%3A_Chapter_12/12.01%3A_Kirchhoff's_Rules
      Kirchhoff’s rules can be used to analyze any circuit, simple or complex. The simpler series and parallel connection rules are special cases of Kirchhoff’s rules. Kirchhoff’s first rule, also known as ...Kirchhoff’s rules can be used to analyze any circuit, simple or complex. The simpler series and parallel connection rules are special cases of Kirchhoff’s rules. Kirchhoff’s first rule, also known as the junction rule, applies to the charge to a junction. Current is the flow of charge; thus, whatever charge flows into the junction must flow out. Kirchhoff’s second rule, also known as the loop rule, states that the voltage drop around a loop is zero.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_Introductory_Physics_-_Building_Models_to_Describe_Our_World_(Martin_Neary_Rinaldo_and_Woodman)/20%3A_Electric_Circuits/20.02%3A_Kirchhoffs_rules
      Kirchhoff’s rules correspond to concepts that we have already covered, but allow us to easily model more complex circuits, for instance, those where there is more than one path for the current to take...Kirchhoff’s rules correspond to concepts that we have already covered, but allow us to easily model more complex circuits, for instance, those where there is more than one path for the current to take. Kirchhoff’s rules refer to “junctions” and “loops”. Junctions and loops depend only on the shape of the circuit, and not on the components in the circuit.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/06%3A_Direct-Current_Circuits/6.04%3A_Kirchhoff's_Rules
      Kirchhoff’s rules can be used to analyze any circuit, simple or complex. The simpler series and parallel connection rules are special cases of Kirchhoff’s rules. Kirchhoff’s first rule, also known as ...Kirchhoff’s rules can be used to analyze any circuit, simple or complex. The simpler series and parallel connection rules are special cases of Kirchhoff’s rules. Kirchhoff’s first rule, also known as the junction rule, applies to the charge to a junction. Current is the flow of charge; thus, whatever charge flows into the junction must flow out. Kirchhoff’s second rule, also known as the loop rule, states that the voltage drop around a loop is zero.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Calculus-Based_Physics_(Schnick)/Volume_B%3A_Electricity_Magnetism_and_Optics/B12%3A_Kirchhoffs_Rules_Terminal_Voltage
      There are two circuit-analysis laws that are so simple that you may consider them “statements of the obvious” and yet so powerful as to facilitate the analysis of circuits of great complexity known as...There are two circuit-analysis laws that are so simple that you may consider them “statements of the obvious” and yet so powerful as to facilitate the analysis of circuits of great complexity known as Kirchhoff’s Laws. The first one, known as “Kirchhoff’s Voltage Law” or “The Loop Rule” states that, starting on a conductor, if you drag the tip of your finger around any loop in the circuit back to the original conductor, the sum of the voltage changes experienced by your fingertip will be zero.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/10%3A_Direct-Current_Circuits/10.04%3A_Kirchhoff's_Rules
      Kirchhoff’s rules can be used to analyze any circuit, simple or complex. The simpler series and parallel connection rules are special cases of Kirchhoff’s rules. Kirchhoff’s first rule, also known as ...Kirchhoff’s rules can be used to analyze any circuit, simple or complex. The simpler series and parallel connection rules are special cases of Kirchhoff’s rules. Kirchhoff’s first rule, also known as the junction rule, applies to the charge to a junction. Current is the flow of charge; thus, whatever charge flows into the junction must flow out. Kirchhoff’s second rule, also known as the loop rule, states that the voltage drop around a loop is zero.
    • https://phys.libretexts.org/Courses/Berea_College/Introductory_Physics%3A_Berea_College/20%3A_Electric_Circuits/20.02%3A_Kirchhoffs_rules
      Kirchhoff’s rules correspond to concepts that we have already covered, but allow us to easily model more complex circuits, for instance, those where there is more than one path for the current to take...Kirchhoff’s rules correspond to concepts that we have already covered, but allow us to easily model more complex circuits, for instance, those where there is more than one path for the current to take. Kirchhoff’s rules refer to “junctions” and “loops”. Junctions and loops depend only on the shape of the circuit, and not on the components in the circuit.
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/04%3A_Batteries_Resistors_and_Ohm's_Law/4.13%3A_Kirchhoffs_Rules
      K1: The net current going into any point in a circuit is zero; expressed otherwise, the sum of all the currents entering any point in a circuit is equal to the sum of all the currents leaving the poin...K1: The net current going into any point in a circuit is zero; expressed otherwise, the sum of all the currents entering any point in a circuit is equal to the sum of all the currents leaving the point. Expressed otherwise, as you move around a closed circuit, the potential will sometimes rise and sometimes fall as you encounter a battery or a resistance; but, when you come round again to the point where you started, there is no change in potential.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/06%3A_Resistive_Networks/6.03%3A_Kirchhoff's_Rules
      Figure \(\PageIndex{5}\): Each of these resistors and voltage sources is traversed from a to b. (a) When moving across a resistor in the same direction as the current flow, subtract the potential drop...Figure \(\PageIndex{5}\): Each of these resistors and voltage sources is traversed from a to b. (a) When moving across a resistor in the same direction as the current flow, subtract the potential drop. (b) When moving across a resistor in the opposite direction as the current flow, add the potential drop. (c) When moving across a voltage source from the negative terminal to the positive terminal, add the potential drop. (d) When moving across a voltage source from the positive terminal to the n…

    Support Center

    How can we help?