Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 10 results
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/06%3A_Resistive_Networks/6.07%3A_Circuits_Bioelectricity_and_DC_Instruments/6.7.07%3A_DC_Circuits_Containing_Resistors_and_Capacitors
      When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light flash discharges the capacitor in a tiny fraction of a second. Why does charging take longe...When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light flash discharges the capacitor in a tiny fraction of a second. Why does charging take longer than discharging? This question and a number of other phenomena that involve charging and discharging capacitors are discussed in this module.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/06%3A_Direct-Current_Circuits/6.06%3A_RC_Circuits
      An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc volta...An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. As the charge on the capacitor increases, the current exponentially decreases from the initial current.
    • https://phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Electricity_and_Magnetism_(Tatum)/10%3A_Electromagnetic_Induction/10.14%3A_Discharge_of_a_Capacitor_through_an_Inductance_and_a_Resistance
      Thus while the electric field in the capacitor diminishes, the magnetic field in the inductor grows, and a back electromotive force (EMF) is induced in the inductor. Even if the capacitor and inductor...Thus while the electric field in the capacitor diminishes, the magnetic field in the inductor grows, and a back electromotive force (EMF) is induced in the inductor. Even if the capacitor and inductor were connected by superconducting wires of zero resistance, while the charge in the circuit is slopping around between the capacitor and the inductor, it will be radiating electromagnetic energy into space and hence losing energy.
    • https://phys.libretexts.org/Bookshelves/University_Physics/Calculus-Based_Physics_(Schnick)/Volume_B%3A_Electricity_Magnetism_and_Optics/B13%3A_RC_Circuit
      Suppose you connect a capacitor across a battery, and wait until the capacitor is charged to the extent that the voltage across the capacitor is equal to the EMF Vo of the battery. Further suppose tha...Suppose you connect a capacitor across a battery, and wait until the capacitor is charged to the extent that the voltage across the capacitor is equal to the EMF Vo of the battery. Further suppose that you remove the capacitor from the battery.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/06%3A_Resistive_Networks/6.06%3A_RC_Circuits
      Figure \(\PageIndex{1}\): (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple ser...Figure \(\PageIndex{1}\): (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple series connection of the voltage source, the resistor, the capacitor, and the switch. (c) When the switch is moved to position B, the circuit reduces to a simple series connection of the resistor, the capacitor, and the switch.
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/21%3A_Circuits_Bioelectricity_and_DC_Instruments/21.06%3A_DC_Circuits_Containing_Resistors_and_Capacitors
      When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light flash discharges the capacitor in a tiny fraction of a second. Why does charging take longe...When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light flash discharges the capacitor in a tiny fraction of a second. Why does charging take longer than discharging? This question and a number of other phenomena that involve charging and discharging capacitors are discussed in this module.
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/07%3A_Capacitance/7.07%3A_Application_-_RC_Circuits
      An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc volta...An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. As the charge on the capacitor increases, the current exponentially decreases from the initial current.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/06%3A_Direct-Current_Circuits/6.06%3A_RC_Circuits
      An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc volta...An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. As the charge on the capacitor increases, the current exponentially decreases from the initial current.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/10%3A_Direct-Current_Circuits/10.06%3A_RC_Circuits
      An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc volta...An RC circuit is one that has both a resistor and a capacitor. The time constant τ for an RC circuit is τ=RC . When an initially uncharged capacitor in series with a resistor is charged by a dc voltage source, the capacitor asymptotically approaches the maximum charge. As the charge on the capacitor increases, the current exponentially decreases from the initial current.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/06%3A_Resistive_Networks/6.06%3A_RC_Circuits
      Figure \(\PageIndex{1}\): (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple ser...Figure \(\PageIndex{1}\): (a) An RC circuit with a two-pole switch that can be used to charge and discharge a capacitor. (b) When the switch is moved to position A, the circuit reduces to a simple series connection of the voltage source, the resistor, the capacitor, and the switch. (c) When the switch is moved to position B, the circuit reduces to a simple series connection of the resistor, the capacitor, and the switch.

    Support Center

    How can we help?