Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 130 results
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07%3A_Mean_Field_Theory_of_Phase_Transitions/7.09%3A_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions
      We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them, as \[x\ns_\alpha={1\over Z}\,\exp\Bigg\{{1\over \theta}\,\bigg[\sum_p\sum_{\alpha'} A_p\, \lambd...We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them, as x\nsα=1Zexp{1θ[pαApλp(s\nsα)λp(s\nsα)x\nsα+\vphi(s\nsα)]} , with \[Z=e^{(\zeta/\theta)+1}=\sum_\alpha\exp\Bigg\{{1\over \theta}\,\bigg[\sum_p\sum_{\alpha'} A_p\, \lambda_p(s\ns_\alpha)\,\lambda_p(s\ns_{\alpha'})\,x\ns_{\alpha'}+ \vphi(s\ns_\alph…
    • https://phys.libretexts.org/Under_Construction/Arovas_Texts/Book%3A_Superconductivity_(Arovas)
      Thumbnail: A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of the superconductor, acting to exclude the magne...Thumbnail: A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet (Faraday's law of induction). This current effectively forms an electromagnet that repels the magnet. (CC BY-SA 2.0 Generic; Mai-Linh Doan via Wikipedia)
    • https://phys.libretexts.org/Under_Construction/Arovas_Texts/07%3A_Electronic_Materials
    • https://phys.libretexts.org/Under_Construction/Arovas_Texts/Book%3A_Nonlinear_Dynamics_(Arovas)/05%3A_HAMILTONIAN_MECHANICS
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04%3A_Statistical_Ensembles/4.05%3A_Grand_Canonical_Ensemble_(GCE)
      \[\begin{split} \ln P\ns_n&=\ln D\ns_{\ssr{W}} (E\ns_{\ssr{U}}-E\ns_n\,,\, V\ns_{\ssr{U}}-V\ns_{\!n}) - \ln D\ns_{\ssr{U}} (E\ns_{\ssr{U}},V\ns_{\ssr{U}})\\ &=\ln D\ns_{\ssr{W}} (E\ns_{\ssr{U}},V\ns_{...\[\begin{split} \ln P\ns_n&=\ln D\ns_{\ssr{W}} (E\ns_{\ssr{U}}-E\ns_n\,,\, V\ns_{\ssr{U}}-V\ns_{\!n}) - \ln D\ns_{\ssr{U}} (E\ns_{\ssr{U}},V\ns_{\ssr{U}})\\ &=\ln D\ns_{\ssr{W}} (E\ns_{\ssr{U}},V\ns_{\ssr{U}})- \ln D\ns_{\ssr{U}}(E\ns_{\ssr{U}},V\ns_{\ssr{U}})\bvph\\ &\qquad - E\ns_n\>{\pz\ln D\ns_{\ssr{W}}(E,V)\over\pz E}\bigg|\nd_{E=E\ns_{\ssr{U}}\atop V=V\ns_{\ssr{U}}} - V\ns_{\!n}\>{\pz\ln D\ns_{\ssr{W}}(E,V)\over\pz V}\bigg|\nd_{E=E\ns_{\ssr{U}}\atop V=V\ns_{\ssr{U}}} \!\! + \ldots\\ &\equ…
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/09%3A_Renormalization
      Thumbnail: RG flow for the Ising model with nearest and nearest neighbor interactions.
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08%3A_Nonequilibrium_Phenomena/8.10%3A_Appendix_I-_Boltzmann_Equation_and_Collisional_Invariants
      Plugging the conveniently parameterized form of ψ(\Bv,t) into \CL, we have \[\begin{split} \CL\psi&=-\gamma\sum_{r\ell m} a_{r\ell m}(t)\>S^r_{\ell +\half}(x) \>x^{\ell/2}\>Y^\ell_m(\nhat)\...Plugging the conveniently parameterized form of ψ(\Bv,t) into \CL, we have \[\begin{split} \CL\psi&=-\gamma\sum_{r\ell m} a_{r\ell m}(t)\>S^r_{\ell +\half}(x) \>x^{\ell/2}\>Y^\ell_m(\nhat)\ +\ {\gamma\over2\pi^{3/2}}\,\sum_{r\ell m}a_{r\ell m}(t)\!\! \int\limits_0^\infty\!\!dx\nd_1\,x_1^{1/2}\,e^{-x\nd_1}\\ &\qquad\times\int\!\!d\nhat\ns_1 \Big[1+2\,x^{1/2} x_1^{1/2}\,\nhat\!\cdot\!\nhat\ns_1+ \frac{2}{3}\big(x-\frac{3}{2}\big)\big(x\nd_1-\frac{3}{2}\big)\Big]\,S^r_{\ell +\half}(x\nd…
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/09%3A_Renormalization/9.S%3A_Summary
      \newcommand\Sa{\textsf a} \newcommand\Sd{\textsf d} \newcommand\Sz{\textsf z} \newcommand\SA{\textsf A} \newcommand\SD{\textsf D} \newcommand\SZ{\textsf Z} \( \newcommand... \newcommand\Sa{\textsf a} \newcommand\Sd{\textsf d} \newcommand\Sz{\textsf z} \newcommand\SA{\textsf A} \newcommand\SD{\textsf D} \newcommand\SZ{\textsf Z} \newcommand\Da{\dot a} \newcommand\Dz{\dot z} \newcommand\DA{\dot A} \newcommand\zbdot{\dot{\bar z}} \def\enth#1{\RDelta {\textsf H}^0_\Rf[{ #1}]} \newcommand\SZ{\textsf Z}} \( \newcommand\kFd{k\ns_{\RF\dar}\) \newcommand\idrp{\int\!\!{d^3\!r\,d^3\!p\over h^3}\>}
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04%3A_Statistical_Ensembles/4.S%3A_Summary
      The differential of E is defined to be dE=T\,dS - p\,dV + \mu\,dN, thus T=\pabc{E}{S}{\,V,N} is the temperature, p=-\pabc{E}{V}{\,S,N} is the pressure, and \mu=\pabc{E}{N}{\,S,V} i...The differential of E is defined to be dE=T\,dS - p\,dV + \mu\,dN, thus T=\pabc{E}{S}{\,V,N} is the temperature, p=-\pabc{E}{V}{\,S,N} is the pressure, and \mu=\pabc{E}{N}{\,S,V} is the chemical potential. In applying Equation [EminusTS] to the denominator of Equation [PEOCE], we shift \CE' by E and integrate over the difference \delta\CE'\equiv\CE'-E, retaining terms up to quadratic order in \delta\CE' in the argument of the exponent.↩
    • https://phys.libretexts.org/Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book%3A_Thermodynamics_and_Statistical_Mechanics_(Arovas)/01%3A_Fundamentals_of_Probability/1.02%3A_Basic_Concepts_in_Probability_Theory
      Here we recite the basics of probability theory.
    • https://phys.libretexts.org/Under_Construction/Arovas_Texts/04%3A_Nonequilibrium_Statistical_Physics

    Support Center

    How can we help?