7.9: Appendix I- Equivalence of the Mean Field Descriptions
( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand\Dalpha
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[1], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dbeta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[2], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dgamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[3], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Ddelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[4], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Depsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[5], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dvarepsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[6], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dzeta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[7], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Deta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[8], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dtheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[9], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dvartheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[10], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Diota
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[11], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dkappa
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[12], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dlambda
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[13], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Dvarpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[14], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\DGamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[15], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\DDelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[16], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\DTheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[17], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vmu
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[18], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vnu
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[19], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vxi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[20], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vom
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[21], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[22], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vvarpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[23], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vrho
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[24], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vvarrho
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[25], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vsigma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[26], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vvarsigma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[27], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vtau
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[28], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vupsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[29], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vphi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[30], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vvarphi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[31], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vchi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[32], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vpsi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[33], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\Vomega
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[34], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\VGamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[35], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\VDelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[36], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\newcommand\BI{\mib I}}
\)
\newcommand { M}
\newcommand { m}
}
\( \newcommand\tcb{\textcolor{blue}\)
\( \newcommand\tcr{\textcolor{red}\)
1$#1_$
\newcommand\SZ{\textsf Z}} \( \newcommand\kFd{k\ns_{\RF\dar}\)
\newcommand\mutB{\tilde\mu}\ns_\ssr{B}
\( \newcommand\xhihOZ
Callstack: at (Template:MathJaxArovas), /content/body/div/span[1], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
\( \newcommand\labar
Callstack: at (Template:MathJaxArovas), /content/body/div/span[2], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/07:_Mean_Field_Theory_of_Phase_Transitions/7.09:_Appendix_I-_Equivalence_of_the_Mean_Field_Descriptions), /content/body/p[1]/span, line 1, column 23
In both the variational density matrix and mean field Hamiltonian methods as applied to the Ising model, we obtained the same result m=tanh((m+h)/θ). What is perhaps not obvious is whether these theories are in fact the same, if their respective free energies agree. Indeed, the two free energy functions, \boldsymbol{\begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\half\,m^2 -h m + \theta\> \bigg\{\bigg({1+m\over 2}\bigg) \ln \bigg({1+m\over 2}\bigg) +\bigg({1- m\over 2}\bigg) \ln \bigg({1-m\over 2}\bigg) \bigg\}\\ f\nd_\ssr{B}(m,h,\theta)&=+\half\,m^2 - \theta\,\ln\Big(e^{+(m+h)/\theta} + e^{-(m+h)/\theta}\Big)\ , \end{split}} where \boldsymbol{f\ns_\ssr{A}} is the variational density matrix result and \boldsymbol{f\ns_\ssr{B}} is the mean field Hamiltonian result, clearly are different functions of their arguments. However, it turns out that upon minimizing with respect to m in each cast, the resulting free energies obey \boldsymbol{f\nd_\ssr{A}(h,\theta)=f\nd_\ssr{B}(h,\theta)}. This agreement may seem surprising. The first method utilizes an approximate (variational) density matrix applied to the exact Hamiltonian ˆH. The second method approximates the Hamiltonian as \boldsymbol{\HH\ns_\ssr{MF}}, but otherwise treats it exactly. The two Landau expansions seem hopelessly different: \boldsymbol{\begin{split} f\nd_\ssr{A}(m,h,\theta)&=-\theta\,\ln 2 - hm +\half\, (\theta-1) \,m^2 + \frac{\theta}{12}\,m^4 + \frac{\theta}{30}\,m^6 + \ldots\vph\\ f\nd_\ssr{B}(m,h,\theta)&=-\theta\,\ln 2 + \half m^2 - {(m+h)^2\over 2\,\theta} +{(m+h)^4\over 12\,\theta^3} - {(m+h)^6\over 45\,\theta^5} + \ldots\ . \end{split}} We shall now prove that these two methods, the variational density matrix and the mean field approach, are in fact equivalent, and yield the same free energy f(h,θ).
Let us generalize the Ising model and write ˆH=−∑i<jJijε(σi,σj)−∑iΦ(σi) . Here, each ‘spin’ σi may take on any of K possible values, {s∗1,…,s∗K}. For the S=1 Ising model, we would have K=3 possibilities, with s∗1=−1, s∗2=0, and s∗3=+1. But the set {s∗α}, with α∈{1,…,K}, is completely arbitrary20. The ‘local field’ term Φ(σ) is also a completely arbitrary function. It may be linear, with Φ(σ)=Hσ, for example, but it could also contain terms quadratic in σ, or whatever one desires.
The symmetric, dimensionless interaction function ε(σ,σ′)=ε(σ′,σ) is a real symmetric K×K matrix. According to the singular value decomposition theorem, any such matrix may be written in the form ε(σ,σ′)=N∗s∑p=1Apλp(σ)λp(σ′) , where the {Ap} are coefficients (the singular values), and the {λp(σ)} are the singular vectors. The number of terms N∗s in this decomposition is such that N∗s≤K. This treatment can be generalized to account for continuous σ.
Variational Density Matrix
The most general single-site variational density matrix is written ϱ(σ)=K∑α=1x∗αδ∗σ,s∗α . Thus, x∗α is the probability for a given site to be in state α, with σ=s∗α. The {x∗α} are the K variational parameters, subject to the single normalization constraint, ∑αx∗α=1. We now have f=1NˆJ(0){Tr(ϱˆH)+kBTTr(ϱlnϱ)}=−12∑p∑α,α′Apλp(s∗α)λp(s∗α′)x∗αx∗α′−∑αφ(s∗α)x∗α+θ∑αx∗αlnx∗αN∑N , where φ(σ)=Φ(σ)/ˆJ(0). We extremize in the usual way, introducing a Lagrange undetermined multiplier ζ to enforce the constraint. This means we extend the function f({x∗α}), writing f∗(x∗1,…,x∗K,ζ)=f(x∗1,…,x∗K)+ζ(K∑α=1x∗α−1) , and freely extremizing with respect to the (K+1) parameters {x∗1,…,x∗K,ζ}. This yields K nonlinear equations, 0=∂f∗∂x∗α=−∑p∑α′Apλp(s∗α)λp(s∗α′)x∗α′−φ(s∗α)+θlnx∗α+ζ+θ , for each α, and one linear equation, which is the normalization condition, 0=∂f∗∂ζ=∑αx∗α−1 .
We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them, as x∗α=1Zexp{1θ[∑p∑α′Apλp(s∗α)λp(s∗α′)x∗α′+φ(s∗α)]} , with Z=e(ζ/θ)+1=∑αexp{1θ[∑p∑α′Apλp(s∗α)λp(s∗α′)x∗α′+φ(s∗α)]} . From the logarithm of x∗α, we may compute the entropy, and, finally, the free energy: f(θ)=12∑p∑α,α′Apλp(s∗α)λp(s∗α′)x∗αx∗α′−θlnZ , which is to be evaluated at the solution of [nonla], {x∗α(h,θ)}
Mean Field Approximation
We now derive a mean field approximation in the spirit of that used in the Ising model above. We write λp(σ)=⟨λp(σ)⟩+δλp(σ) , and abbreviate \labarp=⟨λp(σ)⟩, the thermodynamic average of λp(σ) on any given site. We then have λp(σ)λp(σ′)=\labar2p+\labarpδλp(σ)+\labarpδλp(σ′)+δλp(σ)δλp(σ′)∑i=−\labar2p+\labarp(λp(σ)+λp(σ′))+δλp(σ)δλp(σ′) . The product δλp(σ)δλp(σ′) is of second order in fluctuations, and we neglect it. This leads us to the mean field Hamiltonian, \boldsymbol{\HH\ns_\ssr{MF}=+\half N \jhz\sum_p A_p\,\labar_p^2 -\sum_i \bigg[\jhz\sum_p A_p\,\labar_p\,\lambda_p(\sigma_i) + \RPhi(\sigma_i)\bigg]\ .} The free energy is then f({\labarp},θ)=12∑pAp\labar2p−θln∑αexp{1θ[∑pAp\labarpλp(s∗α)+φ(s∗α)]} . The variational parameters are the mean field values {\labarp}.
The single site probabilities {x∗α} are then x∗α=1Zexp{1θ[∑pAp\labarpλp(s∗α)+φ(s∗α)]} , with Z implied by the normalization ∑αxα=1. These results reproduce exactly what we found in Equation [nonla], since the mean field equation here, ∂f/∂\labarp=0, yields \labarp=K∑α=1λp(s∗α)x∗α . The free energy is immediately found to be f(θ)=12∑pAp\labar2p−θlnZ , which again agrees with what we found using the variational density matrix.
Thus, whether one extremizes with respect to the set {x∗1,…,x∗K,ζ}, or with respect to the set {\labarp}, the results are the same, in terms of all these parameters, as well as the free energy f(θ). Generically, both approaches may be termed ‘mean field theory’ since the variational density matrix corresponds to a mean field which acts on each site independently21.