Loading [MathJax]/jax/input/MathML/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 3 results
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/11%3A_Particle_Physics_and_Cosmology/11.03%3A_Particle_Conservation_Laws
      Elementary particle interactions are governed by particle conservation laws, which can be used to determine what particle reactions and decays are possible (or forbidden). The baryon number conservati...Elementary particle interactions are governed by particle conservation laws, which can be used to determine what particle reactions and decays are possible (or forbidden). The baryon number conservation law and the three lepton number conversation law are valid for all physical processes. However, conservation of strangeness is valid only for strong nuclear interactions and electromagnetic interactions.
    • https://phys.libretexts.org/Bookshelves/College_Physics/College_Physics_1e_(OpenStax)/33%3A_Particle_Physics/33.05%3A_Quarks_-_Is_That_All_There_Is
      Quarks have been mentioned at various points in this text as fundamental building blocks and members of the exclusive club of truly elementary particles. Note that an elementary or fundamental particl...Quarks have been mentioned at various points in this text as fundamental building blocks and members of the exclusive club of truly elementary particles. Note that an elementary or fundamental particle has no substructure (it is not made of other particles) and has no finite size other than its wavelength. This does not mean that fundamental particles are stable—some decay, while others do not. Keep in mind that all leptons seem to be fundamental, whereas no hadrons are fundamental.
    • https://phys.libretexts.org/Bookshelves/University_Physics/University_Physics_(OpenStax)/University_Physics_III_-_Optics_and_Modern_Physics_(OpenStax)/11%3A_Particle_Physics_and_Cosmology/11.04%3A_Quarks
      Six known quarks exist: up (u), down (d), charm (c), strange (s), top (t), and bottom (b). These particles are fermions with half-integral spin and fractional charge. Baryons consist of three quarks, ...Six known quarks exist: up (u), down (d), charm (c), strange (s), top (t), and bottom (b). These particles are fermions with half-integral spin and fractional charge. Baryons consist of three quarks, and mesons consist of a quark-antiquark pair. Due to the strong force, quarks cannot exist in isolation. Evidence for quarks is found in scattering experiments.

    Support Center

    How can we help?