Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 2 results
    • https://phys.libretexts.org/Bookshelves/Mathematical_Physics_and_Pedagogy/Computational_Physics_(Chong)/11%3A_Discrete_Fourier_Transforms
      \[\mathrm{DFT}\Big\{f_0, f_1, \dots, f_{N-1}\Big\} = \Big\{F_0, F_1, \dots, F_{N-1}\Big\} \qquad\mathrm{where}\quad F_n = \sum_{m=0}^{N-1} e^{-2\pi i \frac{mn}{N}}\, f_m.\] \[\mathrm{IDFT}\Big\{F_0, F...\[\mathrm{DFT}\Big\{f_0, f_1, \dots, f_{N-1}\Big\} = \Big\{F_0, F_1, \dots, F_{N-1}\Big\} \qquad\mathrm{where}\quad F_n = \sum_{m=0}^{N-1} e^{-2\pi i \frac{mn}{N}}\, f_m.\] \[\mathrm{IDFT}\Big\{F_0, F_1, \dots, F_{N-1}\Big\} = \Big\{f_0, f_1, \dots, f_{N-1}\Big\} \qquad\mathrm{where}\quad f_m = \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i \frac{mn}{N}}\, F_n.\]
    • https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/19%3A_One-Dimensional_Crystal_Dynamics/19.08%3A_The_Discrete_Fourier_Transform
      \[ X_{n}=\sum_{j=0}^{N-1} x_{j} e^{-i 2 \pi j n / N}=\sum_{j=0}^{N-1} \dfrac{1}{N} \sum_{n^{\prime}=0}^{N-1} X_{n^{\prime}} e^{i 2 \pi n^{\prime} j / N} e^{-i 2 \pi j n / N}\] \[\sum_{j=1}^{N} x_{j}^{...\[ X_{n}=\sum_{j=0}^{N-1} x_{j} e^{-i 2 \pi j n / N}=\sum_{j=0}^{N-1} \dfrac{1}{N} \sum_{n^{\prime}=0}^{N-1} X_{n^{\prime}} e^{i 2 \pi n^{\prime} j / N} e^{-i 2 \pi j n / N}\] \[\sum_{j=1}^{N} x_{j}^{*} x_{j}=\dfrac{1}{N^{2}} \sum_{j=1}^{N} \sum_{m=0}^{N-1} X_{m}^{*} e^{-i 2 \pi m j / N} \sum_{n=0}^{N-1} X_{n} e^{i 2 \pi n j / N}\]

    Support Center

    How can we help?