# 11: Discrete Fourier Transforms

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

The Discrete Fourier Transform (DFT) is a discretized version of the Fourier transform, which is widely used in numerical simulation and analysis. Given a set of $$N$$ numbers $$\{f_0, f_1, \dots, f_{N-1}\}$$, the DFT produces another set of $$N$$ numbers $$N$$ numbers $$\{F_0, F_1, \dots, F_{N-1}\}$$, defined as follows:

$\mathrm{DFT}\Big\{f_0, f_1, \dots, f_{N-1}\Big\} = \Big\{F_0, F_1, \dots, F_{N-1}\Big\} \qquad\mathrm{where}\quad F_n = \sum_{m=0}^{N-1} e^{-2\pi i \frac{mn}{N}}\, f_m.$

The inverse of this transformation is the Inverse Discrete Fourier Transform (IDFT):

$\mathrm{IDFT}\Big\{F_0, F_1, \dots, F_{N-1}\Big\} = \Big\{f_0, f_1, \dots, f_{N-1}\Big\} \qquad\mathrm{where}\quad f_m = \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i \frac{mn}{N}}\, F_n.$

The inverse relationship between the DFT and the IDFT is straightforward to prove, by using the identity

$\sum_{m=0}^{N-1} e^{\pm 2\pi i \frac{m(n-n')}{N}} = N \delta_{nn'},$

where $$\delta_{nn'}$$ denotes the Kronecker delta. This identity is derived from the geometric series formula.

This page titled 11: Discrete Fourier Transforms is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.