Skip to main content
Physics LibreTexts

11: Discrete Fourier Transforms

  • Page ID
    34863
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Discrete Fourier Transform (DFT) is a discretized version of the Fourier transform, which is widely used in numerical simulation and analysis. Given a set of \(N\) numbers \(\{f_0, f_1, \dots, f_{N-1}\}\), the DFT produces another set of \(N\) numbers \(N\) numbers \(\{F_0, F_1, \dots, F_{N-1}\}\), defined as follows:

    \[\mathrm{DFT}\Big\{f_0, f_1, \dots, f_{N-1}\Big\} = \Big\{F_0, F_1, \dots, F_{N-1}\Big\} \qquad\mathrm{where}\quad F_n = \sum_{m=0}^{N-1} e^{-2\pi i \frac{mn}{N}}\, f_m.\]

    The inverse of this transformation is the Inverse Discrete Fourier Transform (IDFT):

    \[\mathrm{IDFT}\Big\{F_0, F_1, \dots, F_{N-1}\Big\} = \Big\{f_0, f_1, \dots, f_{N-1}\Big\} \qquad\mathrm{where}\quad f_m = \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i \frac{mn}{N}}\, F_n.\]

    The inverse relationship between the DFT and the IDFT is straightforward to prove, by using the identity

    \[\sum_{m=0}^{N-1} e^{\pm 2\pi i \frac{m(n-n')}{N}} = N \delta_{nn'},\]

    where \(\delta_{nn'}\) denotes the Kronecker delta. This identity is derived from the geometric series formula.


    This page titled 11: Discrete Fourier Transforms is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.