Search
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/06%3A_Scattering_from_Potential_Steps_and_Square_Barriers
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/03%3A_The_Schrodinger_Equation/3.03%3A_Analysis_of_the_wave_equationOne of the important aspects of the Schrödinger equation(s) is its linearity. For the time independent Schrödinger equation, which is usually called an eigenvalue problem.
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/05%3A_Innite_Wells/5.01%3A_Zero_of_Energy_is_ArbitraryThat is a very workable definition, except in one case: if we take a square well and make it deeper and deeper, the energy of the lowest state decreases with the bottom of the well. As the well depth g...That is a very workable definition, except in one case: if we take a square well and make it deeper and deeper, the energy of the lowest state decreases with the bottom of the well. As the well depth goes to infinity, the energy of the lowest bound state reaches −∞, and so does the second, third etc. It makes much more physical sense to define the bottom of the well to have zero energy, and the potential outside to have value V 0, which goes to infinity.
- https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Nuclear_and_Particle_Physics_(Walet)/09%3A_Relativistic_Kinematics/9.01%3A_Lorentz_Transformations_of_Energy_and_MomentumFrom the Lorentz transformation property of time and position, for a change of velocity along the x-axis from a coordinate system at rest to one that is moving with velocity \({\vec{v}} = (v_x,0,0...From the Lorentz transformation property of time and position, for a change of velocity along the x-axis from a coordinate system at rest to one that is moving with velocity →v=(vx,0,0) we have We know however that the full four-momentum is conserved, i.e., if we have two particles coming into a collision and two coming out, the sum of four-momenta before and after is equal,
- https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Nuclear_and_Particle_Physics_(Walet)/04%3A_Nuclear_Models/4.01%3A_Nuclear_Shell_ModelThe simplest of the single particle models is the nuclear shell model. It is based on the observation that the nuclear mass formula, which describes the nuclear masses quite well on average, fails for...The simplest of the single particle models is the nuclear shell model. It is based on the observation that the nuclear mass formula, which describes the nuclear masses quite well on average, fails for certain “magic numbers”, i.e., for neutron number N=20, 28, 50, 82, 126 and proton number Z=20, 28, 50, 82.
- https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Nuclear_and_Particle_Physics_(Walet)/09%3A_Relativistic_Kinematics/9.02%3A_Invariant_MassOne of the key numbers we can extract from mass and momentum is the invariant mass, a number independent of the Lorentz frame we are in.
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/13%3A_Miscellaneous_Quantum_Mechanics_Topics/13.01%3A_Bell's_TheoremA derivation of the theorem and a discussion of the consequences. A somewhat subtle topic, but here it is treated in a non-technical fashion. It assumes knowledge of wave-particle duality such as can ...A derivation of the theorem and a discussion of the consequences. A somewhat subtle topic, but here it is treated in a non-technical fashion. It assumes knowledge of wave-particle duality such as can be found in the Double Slit or the Wave-Particle Duality documents; also assumed is considerable knowledge of the Stern-Gerlach Experiment.
- https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Nuclear_and_Particle_Physics_(Walet)/08%3A_Symmetries_of_the_theory_of_strong_interactions/8.04%3A__SU(4)%2C_SU(5)%2C_and_SU(6)_flavor_symmetriesOnce we have three flavors of quarks, we can ask the question whether more flavors exists. At the moment we know of three generations of quarks, corresponding to three generations (pairs).
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/13%3A_Miscellaneous_Quantum_Mechanics_Topics/13.16%3A_The_Development_of_Quantum_MechanicsA brief survey of the development of Quantum Mechanics in the 1920's by Schrödinger and Heisenberg. Some of the material is non-traditional. Based on a discussion in an upper year liberal arts course ...A brief survey of the development of Quantum Mechanics in the 1920's by Schrödinger and Heisenberg. Some of the material is non-traditional. Based on a discussion in an upper year liberal arts course in physics without mathematics.
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/13%3A_Miscellaneous_Quantum_Mechanics_Topics/13.15%3A_The_Bohr_Model_of_the_AtomA very brief introduction, originally designed for upper-year liberal arts students.
- https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_(Walet)/13%3A_Miscellaneous_Quantum_Mechanics_Topics