Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 6 results
    • https://phys.libretexts.org/Courses/Bowdoin_College/Phys1140%3A_Introductory_Physics_II%3A_Part_2/01%3A_The_Nature_of_Light/1.02%3A_The_Propagation_of_Light
      The index of refraction of a material is n=cv, where v is the speed of light in a material and c is the speed of light in a vacuum. The ray model of light describes the path of light as...The index of refraction of a material is n=cv, where v is the speed of light in a material and c is the speed of light in a vacuum. The ray model of light describes the path of light as straight lines. The part of optics dealing with the ray aspect of light is called geometric optics. Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; and (3) after being reflected from a mirror.
    • https://phys.libretexts.org/Courses/Muhlenberg_College/Physics_122%3A_General_Physics_II_(Collett)/10%3A_The_Nature_of_Light/10.02%3A_The_Propagation_of_Light
      The index of refraction of a material is n=cv, where v is the speed of light in a material and c is the speed of light in a vacuum. The ray model of light describes the path of light as...The index of refraction of a material is n=cv, where v is the speed of light in a material and c is the speed of light in a vacuum. The ray model of light describes the path of light as straight lines. The part of optics dealing with the ray aspect of light is called geometric optics. Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; and (3) after being reflected from a mirror.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Physics_II_(2212)/10%3A_Geometrical_Optics/10.01%3A_The_Propagation_of_Light
      Knowing the rotational speed of the wheel, the number of teeth on the wheel, and the distance to the mirror, Fizeau determined the speed of light to be 3.15×108m/s, which is only 5% too ...Knowing the rotational speed of the wheel, the number of teeth on the wheel, and the distance to the mirror, Fizeau determined the speed of light to be 3.15×108m/s, which is only 5% too high. The teeth of the wheel block the reflected light upon return when the wheel is rotated at a rate that matches the light travel time to and from the mirror.
    • https://phys.libretexts.org/Courses/Grand_Rapids_Community_College/PH246_Calculus_Physics_II_(2025)/11%3A_Electromagnetic_Waves/11.04%3A_The_Propagation_of_Light
      The index of refraction of a material is n=cv, where v is the speed of light in a material and c is the speed of light in a vacuum. The ray model of light describes the path of light as...The index of refraction of a material is n=cv, where v is the speed of light in a material and c is the speed of light in a vacuum. The ray model of light describes the path of light as straight lines. The part of optics dealing with the ray aspect of light is called geometric optics. Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; and (3) after being reflected from a mirror.
    • https://phys.libretexts.org/Courses/Georgia_State_University/GSU-TM-Introductory_Physics_II_(1112)/10%3A_Geometrical_Optics/10.03%3A_The_Propagation_of_Light
      Knowing the rotational speed of the wheel, the number of teeth on the wheel, and the distance to the mirror, Fizeau determined the speed of light to be 3.15×108m/s, which is only 5% too ...Knowing the rotational speed of the wheel, the number of teeth on the wheel, and the distance to the mirror, Fizeau determined the speed of light to be 3.15×108m/s, which is only 5% too high. The teeth of the wheel block the reflected light upon return when the wheel is rotated at a rate that matches the light travel time to and from the mirror.
    • https://phys.libretexts.org/Courses/Kettering_University/Electricity_and_Magnetism_with_Applications_to_Amateur_Radio_and_Wireless_Technology/13%3A_Propagation_of_Electromagnetic_Waves/13.02%3A_Ray_and_Wave_Models_of_Propagation
      The ray model of electromagnetic waves describes the path of the waves as straight lines. The rays can travel in three ways from a source to another location: (1) directly from the source through empt...The ray model of electromagnetic waves describes the path of the waves as straight lines. The rays can travel in three ways from a source to another location: (1) directly from the source through empty space; (2) through various media; and (3) after being reflected from a mirror.

    Support Center

    How can we help?