Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

11.3: Theory of the Curve of Growth

( \newcommand{\kernel}{\mathrm{null}\,}\)

Let us think again of our homogeneous slab of gas in front of a continuum source. Let Iλ(c) be the radiance per unit wavelength interval of the continuum at wavelength λ. Let τ(x) be the optical thickness in the vicinity of a line and x=λλ0. If the slab is of thickness D, the emergent radiance per unit wavelength as a function of wavelength will be

Iλ(x)=Iλ(c)exp[τ(x)].

The equivalent width W is given by

WIλ(c)=(Iλ(c)Iλ(x))dx,

or, by making use of Equation ???,

W=[1exp{τ(x)}]dx.

If the line is symmetric, this may be evaluated as

W=20[1exp{τ(x)}]dx.

In former days, gallant efforts were made to find, using various approximations in the different regimes of the curve of growth, algebraic expressions for evaluating this integral. The availability of modern computers enables us to carry out the integration numerically.


This page titled 11.3: Theory of the Curve of Growth is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?