Skip to main content
\(\require{cancel}\)
Physics LibreTexts

1.1: Poincare Algebra defined

  • Page ID
    9383
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    In order to desc¡ibe a physical system which is Lorentz invaria¡t one must construct from the fundamental dynamical va¡iables for the system ten Hermitian operators: \(H\), \(P^{j}\), \(J^i\), K^j}\) where (where \(j = 1,2,3\)) satisfying

    \[ P^j, P^k]=0\]

    \[ P^j, H]=0\]

    \[[J^j,P^k] = i \hbar \epsilon_{ijk}P^l\]

    \[ J^j, H]=0\]

    \[[J^j,J^k] = i \hbar \epsilon_{ijk}J^l\]

    where \(\hbar = h/2\pi\), \(h\) is Planck's constant, \(c\) is the speed of light, \(\delta_{ij}\) is the Kronecker delta symbol and \(\epsilon_ijl\) is the Levi-Civita permutation symbol.


    1.1: Poincare Algebra defined is shared under a not declared license and was authored, remixed, and/or curated by Malcolm McMillian.

    • Was this article helpful?