# 1.1: Poincare Algebra defined

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

In order to desc¡ibe a physical system which is Lorentz invaria¡t one must construct from the fundamental dynamical va¡iables for the system ten Hermitian operators: $$H$$, $$P^{j}$$, $$J^i$$, K^j}\) where (where $$j = 1,2,3$$) satisfying

$P^j, P^k]=0$

$P^j, H]=0$

$[J^j,P^k] = i \hbar \epsilon_{ijk}P^l$

$J^j, H]=0$

$[J^j,J^k] = i \hbar \epsilon_{ijk}J^l$

where $$\hbar = h/2\pi$$, $$h$$ is Planck's constant, $$c$$ is the speed of light, $$\delta_{ij}$$ is the Kronecker delta symbol and $$\epsilon_ijl$$ is the Levi-Civita permutation symbol.

This page titled 1.1: Poincare Algebra defined is shared under a not declared license and was authored, remixed, and/or curated by Malcolm McMillian.