Skip to main content
Physics LibreTexts

4.6: Operators

  • Page ID
    1163
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    An operator, \(\begin{equation}0\end{equation}\) (say), is a mathematical entity which transforms one function into another: i.e.,

    \begin{equation}O(f(x)) \rightarrow g(x)\end{equation}

    For instance, \(\begin{equation}x\end{equation}\) is an operator, since  \(\begin{equation}x f(x)\end{equation}\) is a different function to \(\begin{equation}f(x)\end{equation}\)  and is fully specified once \(\begin{equation}f(x)\end{equation}\) is given. Furthermore, \(\begin{equation}d / d x\end{equation}\) is also an operator, since  \(\begin{equation}d f(x) / d x\end{equation}\) is a different function to \(\begin{equation}f(x)\end{equation}\), and is fully specified once \(\begin{equation}f(x)\end{equation}\) is given. Now,

    \begin{equation}x \frac{d f}{d x} \neq \frac{d}{d x}(x f)\end{equation}

     

    This can also be written
    \begin{equation}x \frac{d}{d x} \neq \frac{d}{d x} x\end{equation}

    where the operators are assumed to act on everything to their right, and a final \(\begin{equation}f(x)\end{equation}\)  is understood [where \(\begin{equation}f(x)\end{equation}\) is a general function]. The above expression illustrates an important point: i.e., in general, operators do not commute. Of course, some operators do commute: e.g.,

    \begin{equation}x x^{2}=x^{2} x\end{equation}

    Finally, an operator, \(\begin{equation}O\end{equation}\), is termed linear if

    \begin{equation}O(c f(x))=c O(f(x))\end{equation}

    where \(\begin{equation}f\end{equation}\)  is a general function, and $c$ a general complex number. All of the operators employed in quantum mechanics are linear.

    Now, from Eqs. (158) and (174),

    \begin{equation}\begin{array}{l}
    \langle x\rangle=\int_{-\infty}^{\infty} \psi^{*} x \psi d x \\
    \langle p\rangle=\int_{-\infty}^{\infty} \psi^{*}\left(-i \hbar \frac{\partial}{\partial x}\right) \psi d x
    \end{array}\end{equation}

    These expressions suggest a number of things. First, classical dynamical variables, such as \(\begin{equation}x \text { and } p\end{equation}\),  are represented in quantum mechanics by linear operators which act on the wavefunction. Second, displacement is represented by the algebraic operator \(\begin{equation}x\end{equation}\), and momentum by the differential operator \(\begin{equation}-i \hbar \partial / \partial x\end{equation}\): i.e.,

    \begin{equation}p \equiv-i \hbar \frac{\partial}{\partial x}\end{equation}

    Finally, the expectation value of some dynamical variable represented by the operator \(\begin{equation}O(x)\end{equation}\) is simply

    \begin{equation}\langle O\rangle=\int_{-\infty}^{\infty} \psi^{*}(x, t) O(x) \psi(x, t) d x\end{equation}

    Clearly, if an operator is to represent a dynamical variable which has physical significance then its expectation value must be real. In other words, if the operator O  represents a physical variable then we require that \(\begin{equation}\langle O\rangle=\langle O\rangle^{*}\end{equation}\), or 

    \begin{equation}\int_{-\infty}^{\infty} \psi^{*}(O \psi) d x=\int_{-\infty}^{\infty}(O \psi)^{*} \psi d x\end{equation}

    where \(\begin{equation}O^{*}\end{equation}\) is the complex conjugate of \(\begin{equation}O\end{equation}\). An operator which satisfies the above constraint is called an Hermitian operator. It is easily demonstrated that \(\begin{equation}x \text { and } p\end{equation}\) are both Hermitian. The Hermitian conjugate, \(\begin{equation}O^{\dagger}\end{equation}\), of a general operator, \(\begin{equation}O\end{equation}\), is defined as follows:

    \begin{equation}\int_{-\infty}^{\infty} \psi^{*}(O \psi) d x=\int_{-\infty}^{\infty}\left(O^{\dagger} \psi\right)^{*} \psi d x\end{equation}

    The Hermitian conjugate of an Hermitian operator is the same as the operator itself: i.e., \(\begin{equation}p^{\dagger}=p\end{equation}\). For a non-Hermitian operator, \(\begin{equation}O\end{equation}\) (say), it is easily demonstrated that \(\begin{equation}\left(O^{\dagger}\right)^{\dagger}=O\end{equation}\), and that the operator  \(\begin{equation}O+O^{t}\end{equation}\) is Hermitian. Finally, if  \(\begin{equation}A \text { and } B\end{equation}\) are two operators, then \(\begin{equation}(A B)^{\dagger}=B^{\dagger} A^{\dagger}\end{equation}\)

    Suppose that we wish to find the operator which corresponds to the classical dynamical variable \(\begin{equation}x p\end{equation}\). In classical mechanics, there is no difference between \(\begin{equation}x p \text { and } p x\end{equation}\). However, in quantum mechanics, we have already seen that \(\begin{equation}x p \neq p x\end{equation}\). So, should be choose \(\begin{equation}x p\end{equation}\) or \(\begin{equation}p x\end{equation}\)? Actually, neither of these combinations is Hermitian. However, \(\begin{equation}(1 / 2)\left[x p+(x p)^{\dagger}\right]\end{equation}\) is Hermitian. Moreover, \(\begin{equation}(1 / 2)\left[x p+(x p)^{\dagger}\right]=(1 / 2)\left(x p+p^{\dagger} x^{\dagger}\right)=(1 / 2)(x p+p x)\end{equation}\), which neatly resolves our problem of which order to put \(\begin{equation}x\end{equation}\) and \(\begin{equation}p\end{equation}\).

    It is a reasonable guess that the operator corresponding to energy (which is called the Hamiltonian, and conventionally denoted \(\begin{equation}H\end{equation}\)) takes the form

    \begin{equation}H \equiv \frac{p^{2}}{2 m}+V(x)\end{equation}

    Note that \(\begin{equation}H\end{equation}\) is Hermitian. Now, it follows from Eq. (191) that

    \begin{equation}H \equiv-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\end{equation}

    However, according to Schrödinger's equation, (137), we have

    \begin{equation}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)=\mathrm{i} \hbar \frac{\partial}{\partial t}\end{equation}

    so

    \begin{equation}H \equiv i \hbar \frac{\partial}{\partial t}\end{equation}

     

    Thus, the time-dependent Schrödinger equation can be written
    \begin{equation}\hbar \frac{\partial \psi}{\partial t}=H \psi\end{equation}

    Finally, if  \(\begin{equation}O(x, p, E)\end{equation}\)  is a classical dynamical variable which is a function of displacement, momentum, and energy, then a reasonable guess for the corresponding operator in quantum mechanics is  \(\begin{equation}(1 / 2)\left[O(x, p, H)+O^{\dagger}(x, p, H)\right], \text { where } p=-\mathrm{i} \hbar \partial / \partial x\end{equation}\), and \(\begin{equation}H=\mathrm{i} \hbar \partial / \partial t\end{equation}\).

     


    This page titled 4.6: Operators is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?