Skip to main content
Physics LibreTexts

4.13: Exercises

  • Page ID
    1170
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. Monochromatic light with a wavelength of \(\begin{equation}6000 Angstrom\end{equation}\) passes through a fast shutter that opens for \(\begin{equation}10^{-9}\end{equation}\) sec. What is the subsequent spread in wavelengths of the no longer monochromatic light?

    2. Calculate \(\begin{equation}\langle x\rangle,\left\langle x^{2}\right\rangle, \text { and } \sigma_{x}, \text { as well as }\langle p\rangle,\left\langle p^{2}\right\rangle, \text { and } \sigma_{p}\end{equation}\), for the normalized wavefunction 

    \begin{equation}\psi(x)=\sqrt{\frac{2 a^{3}}{\pi}} \frac{1}{x^{2}+a^{2}}\end{equation}

    Use these to find \(\begin{equation}\sigma_{x} \sigma_{p}\end{equation}\). Note that \(\begin{equation}\int_{-\infty}^{\infty} d x /\left(x^{2}+a^{2}\right)=\pi / a\end{equation}\). 

    3. Classically, if a particle is not observed then the probability of finding it in a one-dimensional box of length $L$, which extends from \(\begin{equation}x=0 \text { to } x=L\end{equation}\), is a constant $1/L$ per unit length. Show that the classical expectation value of \(\begin{equation}x \text { is } L / 2, \text { the expectation value of } x^{2} \text { is } L^{2} / 3\end{equation}\) and the standard deviation of \(\begin{equation}x \text { is } L / \sqrt{12}\end{equation}\).

    4. Demonstrate that if a particle in a one-dimensional stationary state is bound then the expectation value of its momentum must be zero.

    5. Suppose that \(\begin{equation}V(x)\end{equation}\) is complex. Obtain an expression for \(\begin{equation}\partial P(x, t) / \partial t\end{equation}\) and \(\begin{equation}d / d t \int P(x, t) d x\end{equation}\) from Schrödinger's equation. What does this tell us about a complex \(\begin{equation}V(x)\end{equation}\)?

    6. \(\begin{equation}\psi_{1}(x) \text { and } \psi_{2}(x)\end{equation}\) are normalized eigenfunctions corresponding to the same eigenvalue. If 

    \begin{equation}\int_{-\infty}^{\infty} \psi_{1}^{*} \psi_{2} d x=c\end{equation}

    where \(\begin{equation}c\end{equation}\) is real, find normalized linear combinations of  \(\begin{equation}\psi_{1} \text { and } \psi_{2}\end{equation}\) which are orthogonal to (a) \(\begin{equation}\psi_{1},(\mathrm{b}) \psi_{1}+\psi_{2}\end{equation}\)

    7. \(\begin{equation}\begin{aligned}
    &\text { Demonstrate that } p=-\mathrm{i} \hbar \partial / \partial x \text { is an Hermitian operator. Find the Hermitian conjugate of }\\
    &a=x+i p
    \end{aligned}\end{equation}\)

    8. An operator $A$, corresponding to a physical quantity \(\begin{equation}\alpha\end{equation}\), has two normalized eigenfunctions \(\begin{equation}\psi_{1}(x) \text { and } \psi_{2}(x)\end{equation}\), with eigenvalues \(\begin{equation}a_{1} \text { and } a_{2}\end{equation}\).  An operator $B$, corresponding to another physical quantity \(\begin{equation}\beta\end{equation}\), has normalized eigenfunctions \(\begin{equation}\phi_{1}(x) \text { and } \phi_{2}(x)\end{equation}\), with eigenvalues \(\begin{equation}b_{1}\end{equation}\) and \(\begin{equation}b_{2}\end{equation}\). The eigenfunctions are related via

    \begin{equation}\begin{array}{l}
    \psi_{1}=\left(2 \phi_{1}+3 \phi_{2}\right) / \sqrt{13} \\
    \psi_{2}=\left(3 \phi_{1}-2 \phi_{2}\right) / \sqrt{13}
    \end{array}\end{equation}

    \(\begin{equation}\alpha\end{equation}\) is measured and the value \(\begin{equation}a_{1}\end{equation}\) is obtained. If \(\begin{equation}\beta\end{equation}\) is then measured and then \(\begin{equation}\alpha\end{equation}\) again, show that the probability of obtaining \(\begin{equation}a_{1} \text { a second time is } 97 / 169 \text { . }\end{equation}\).

    9. Demonstrate that an operator which commutes with the Hamiltonian, and contains no explicit time dependence, has an expectation value which is constant in time.

    10. For a certain system, the operator corresponding to the physical quantity $A$ does not commute with the Hamiltonian. It has eigenvalues \(\begin{equation}a_{1} \text { and } a_{2}\end{equation}\), corresponding to properly normalized eigenfunctions

    \begin{equation}\begin{aligned}
    \phi_{1} &=\left(u_{1}+u_{2}\right) / \sqrt{2} \\
    \phi_{2} &=\left(u_{1}-u_{2}\right) / \sqrt{2}
    \end{aligned}\end{equation}

    where \(\begin{equation}u_{1} \text { and } u_{2}\end{equation}\) are properly normalized eigenfunctions of the Hamiltonian with eigenvalues \(\begin{equation}E_{1} \text { and } E_{2}\end{equation}\). If the system is in the state \(\begin{equation}\psi=\phi_{1} \text { at time } t=0\end{equation}\), , show that the expectation value of $A$ at time $t$ is

    \begin{equation}\langle A\rangle=\left(\frac{a_{1}+a_{2}}{2}\right)+\left(\frac{a_{1}-a_{2}}{2}\right) \cos \left(\frac{\left[E_{1}-E_{2}\right] t}{\hbar}\right)\end{equation}


    This page titled 4.13: Exercises is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?