6.4: Two-Particle Systems
- Page ID
- 1195
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Consider a system consisting of two particles, mass \(\begin{equation}m_{1} \text { and } m_{2}\end{equation}\), interacting via the potential \(\begin{equation}V\left(x_{1}-x_{2}\right)\end{equation}\) which only depends on the relative positions of the particles. According to Eqs. (419) and (426), the Hamiltonian of the system is written
\begin{equation}H\left(x_{1}, x_{2}\right)=-\frac{\hbar^{2}}{2 m_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\hbar^{2}}{2 m_{2}} \frac{\partial^{2}}{\partial x_{2}^{2}}+V\left(x_{1}-x_{2}\right)\end{equation}
Let
\begin{equation}x^{\prime}=x_{1}-x_{2}\end{equation}
be the particles' relative position, and
\begin{equation}X=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}\end{equation}
the position of the center of mass. It is easily demonstrated that
\begin{equation}\frac{\partial}{\partial x_{1}}=\frac{m_{1}}{m_{1}+m_{2}} \frac{\partial}{\partial X}+\frac{\partial}{\partial x^{\prime}}\end{equation}
\begin{equation}\frac{\partial}{\partial x_{2}}=\frac{m_{2}}{m_{1}+m_{2}} \frac{\partial}{\partial X}-\frac{\partial}{\partial x^{\prime}}\end{equation}
Hence, when expressed in terms of the new variables, \(\begin{equation}x^{\prime} \text { and } X\end{equation}\), the Hamiltonian becomes
\begin{equation}H\left(x^{\prime}, X\right)=-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial X^{2}}-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{\prime 2}}+V\left(x^{\prime}\right)\end{equation}
where
\begin{equation}M=m_{1}+m_{2}\end{equation}
is the total mass of the system, and
\begin{equation}\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\end{equation}
the so-called reduced mass. Note that the total momentum of the system can be written
\begin{equation}P=-i \hbar\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right)=-i \hbar \frac{\partial}{\partial X}\end{equation}
The fact that the Hamiltonian (442) is separable when expressed in terms of the new coordinates [i.e., \(\begin{equation}\left.H\left(x^{\prime}, X\right)=H_{x^{\prime}}\left(x^{\prime}\right)+H_{X}(X)\right]\end{equation}\) suggests, by analogy with the analysis in the previous section, that the wavefunction can be factorized: i.e.,
\begin{equation}\psi\left(x_{1}, x_{2}, t\right)=\psi_{z^{\prime}}\left(x^{\prime}, t\right) \psi_{X}(X, t)\end{equation}
Hence, the time-dependent Schrödinger equation (423) also factorizes to give
\begin{equation}i \hbar \frac{\partial \psi_{x^{\prime}}}{\partial t}=-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2} \psi_{x^{\prime}}}{\partial x^{\prime 2}}+V\left(x^{\prime}\right) \psi_{x^{\prime}}\end{equation}
and
\begin{equation}\text { i } \hbar \frac{\partial \psi_{X}}{\partial t}=-\frac{\hbar^{2}}{2 M} \frac{\partial^{2} \psi_{X}}{\partial X^{2}}\end{equation}
The above equation can be solved to give
\begin{equation}\psi_{X}(X, t)=\psi_{0} \mathrm{e}^{\mathrm{i}\left(P^{\prime} X / \hbar-E^{\prime} t / \hbar\right)}\end{equation}
where \(\begin{equation}\psi_{\mathrm{b}}, P^{\prime}, \text { and } E^{\prime}=P^{\prime 2} / 2 M\end{equation}\) are constants. It is clear, from Eqs. (445), (446), and (449), that the total momentum of the system takes the constant value \(\begin{equation}P^{\prime}\end{equation}\) : i.e., momentum is conserved.
Suppose that we work in the centre of mass frame of the system, which is characterized by \(\begin{equation}P^{\prime}=0\end{equation}\). It follows that \(\begin{equation}\psi_{X}=\psi_{0}\end{equation}\). In this case, we can write the wavefunction of the system in the form
\begin{equation}\psi\left(x_{1}, x_{2}, t\right)=\psi_{x^{\prime}}\left(x^{\prime}, t\right) \psi_{\mathrm{b}} \equiv \psi\left(x_{1}-x_{2}, t\right), \text { where }\end{equation}
\begin{equation}\mathrm{i} \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi\end{equation}
In other words, in the center of mass frame, two particles of mass \(\begin{equation}m_{1} \text { and } m_{2}\end{equation}\), moving in the potential \(\begin{equation}V\left(x_{1}-x_{2}\right)\end{equation}\), are equivalent to a single particle of mass \(\begin{equation}\mu, \text { moving in the potential } V(x), \text { where } x=x_{1}-x_{2}\end{equation}\). This is a familiar result from classical dynamics.
Contributors
Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)
\( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)


