# 4.4: The Paraboloid

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

The Equation $$x^2 = 4qz = 2lz$$ is a parabola in the $$xz$$-plane. The distance between vertex and focus is $$q$$, and the length of the semi latus rectum $$l = 2q$$. The Equation can also be written

$\frac{x^2}{a^2} = \frac{z}{h} \label{4.4.1} \tag{4.4.1}$

Here $$a$$ and $$h$$ are distances such that $$x = a$$ when $$z = h$$, and the length of the semi latus rectum is $$l = a^2 /(2h)$$.

If this parabola is rotated through $$360^\circ$$ about the $$z$$-axis, the figure swept out is a paraboloid of revolution, or circular paraboloid. Many telescope mirrors are of this shape. The Equation to the circular paraboloid is

$\frac{x^2}{a^2} + \frac{y^2}{a^2} = \frac{z}{h}. \label{4.4.2} \tag{4.4.2}$

The cross-section at $$z = h$$ is a circle of radius $$a$$.

The Equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{h} , \label{4.4.3} \tag{4.4.3}$

in which we shall choose the $$x$$- and $$y$$-axes such that $$a > b$$, is an elliptic paraboloid and, if $$a ≠ b$$, is not formed by rotation of a parabola. At $$z = h$$, the cross section is an ellipse of semi major and minor axes equal to $$a$$ and $$b$$ respectively. The section in the plane $$y = 0$$ is a parabola of semi latus rectum $$a^2 /(2h)$$. The section in the plane $$x = 0$$ is a parabola of semi latus rectum $$b^2 /(2h)$$. The elliptic paraboloid lies entirely above the $$xy$$-plane.

The Equation

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{h} \label{4.4.4} \tag{4.4.4}$

is a hyperbolic paraboloid, and its shape is not quite so easily visualized. Unlike the elliptic paraboloid, it extends above and below the plane. It is a saddle-shaped surface, with the saddle point at the origin. The section in the plane $$y = 0$$ is the "nose down" parabola $$x^2 = a^2 z / h$$ extending above the xy-plane. The section in the plane $$x = 0$$ is the "nose up" parabola $$y^2 = -b^2 z /h$$ extending below the $$xy$$-plane. The section in the plane $$z = h$$ is the hyperbola

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \label{4.4.5} \tag{4.4.5}$

The section with the plane $$z = −h$$ is the conjugate hyperbola

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 . \label{4.4.6} \tag{4.4.6}$

The section with the plane $$z = 0$$ is the asymptotes

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 . \label{4.4.7} \tag{4.4.7}$

The surface for $$a = 3$$, $$b = 2$$, $$h = 1$$ is drawn in figure $$\text{IV.4}$$.

This page titled 4.4: The Paraboloid is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.