Skip to main content
\(\require{cancel}\)
Physics LibreTexts

5.4.1: Field of a Point Mass

  • Page ID
    8131
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Equation 5.3.1, together with the definition of field strength as the force experienced by unit mass, means that the field at a distance \(r\) from a point mass \(M\) is

    \[g = \frac{GM}{r^2} \quad \text{N kg}^{-1} \text{ or m s}^{-2} \label{5.4.1} \tag{5.4.1}\]

    In vector form, this can be written as

    \[\textbf{g} = -\frac{GM}{r^2} \hat{\textbf{r}} \quad \text{N kg}^{-1} \text{ or m s}^{-2} \label{5.4.2} \tag{5.4.2}\]

    Here \(\hat{\textbf{r}}\) is a dimensionless unit vector in the radial direction.

    It can also be written as

    \[\textbf{g} = -\frac{GM}{r^3} \textbf{r} \quad \text{N kg}^{-1} \text{ or m s}^{-2} \label{5.4.3} \tag{5.4.3}\]

    Here \(\textbf{r}\) is a vector of magnitude \(r\) − hence the \(r^3\) in the denominator.


    This page titled 5.4.1: Field of a Point Mass is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.