Skip to main content
Physics LibreTexts

9.8: Zeeman Components

  • Page ID
    9049
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this section I give \(\mathcal{S}(\text{C})\), the relative strengths of Zeeman components within a line.

    I consider first lines for which \(J\) changes by \(1\), and then lines for which \(J\) does not change.

    \(\underline{\text{Lines connecting } J \text{ to } J-1.}\)

    Components connecting \(M\) to \(M − 1\):

    \[\mathcal{S}(\text{C}) = (J+M_>)(J+M_<) \label{9.8.1}\]

    Components connecting \(M\) to \(M+1\):

    \[\mathcal{S}(\text{C}) = (J-M_<)(J-M_>) . \label{9.8.2}\]

    Components in which \(M\) does not change:

    \[\mathcal{S}(\text{C}) = 4 (J+M) (J-M) . \label{9.8.3}\]

    In these equations \(J\) is the larger of the two \(J\)-values involved in the line; \(M_>\) and \(M_<\) are, respectively, the larger and the smaller of the two \(M\)-values involved in the component. Note that these formulas are not normalized to a sum of unity. In order to do so, the strength of each component should be divided by the sum of the strengths of all the components – i.e. by the strength of the line.

    Example \(\PageIndex{1}\)

    Consider the Zeeman pattern of figure \(\text{VII.1}\). The strength factors for each of the nine components, reading from left to right in the figure, will be found to be

    0 2 6 12 16 12 6 2 0

    Normalized to unity, these are

    0.0000 0.0357 0.1071 0.2143 0.2857 0.2143 0.1071 0.0357 0.0000

    As described in section 7.27 in connection with figure \(\text{VII.1}\), the components within each group of three are unresolved, so the relative strengths of the three groups are \(\frac{1}{7}\) \(\frac{5}{7}\) \(\frac{1}{7}\).

    Consider also the Zeeman pattern of figure \(\text{VII.2}\). The strength factors for each of the six components, reading from left to right in the figure, will be found to be

    2 6 8 8 6 2

    or, normalized to unity,

    \(\frac{1}{16}\) \(\frac{3}{16}\) \(\frac{4}{16}\) \(\frac{4}{16}\) \(\frac{3}{16}\) \(\frac{1}{16}\).

    \(\underline{\text{Lines for which } J \text{ does not change}.}\)

    Components for which \(M\) changes by \(\pm 1\)

    \[\mathcal{S}(\text{C}) = (J+ M_<)(J-M_>) . \label{9.8.4}\]

    Components for which \(M\) does not change:

    \[\mathcal{S} (\text{C}) = 4 M^2 . \label{9.8.5}\]

    Example \(\PageIndex{2}\)

    For a line \(J − J = 2 − 2\), the relative strengths of the components are

    \begin{array}{c c c}
    M^\prime & M^{\prime \prime} & \mathcal{S}(\text{C}) \\
    \\
    -2 & -2 & 16 \\
    -2 & -1 & 4 \\
    -1 & -2 & 4 \\
    -1 & -1 & 4 \\
    -1 & 0 & 6 \\
    0 & -1 & 6 \\
    0 & 0 & 0 \\
    0 & 1 & 6 \\
    1 & 0 & 6 \\
    1 & 1 & 4 \\
    1 & 2 & 4 \\
    2 & 1 & 4 \\
    2 & 2 & 16 \\
    \end{array}


    This page titled 9.8: Zeeman Components is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.