Skip to main content
Physics LibreTexts

21.5: Work-Energy Theorem

  • Page ID
    25645
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a rigid body, we can also consider the work-energy theorem separately for the translational motion and the rotational motion. Once again treat the rigid body as a point-like particle moving with velocity \(\overrightarrow{\mathbf{V}}_{c m}\) in reference frame O . We can use the same technique that we used when treating point particles to show that the work done by the external forces is equal to the change in kinetic energy

    \[\begin{array}{l}
    W_{\text {tans }}^{\text {ext }}=\int_{i}^{f} \overrightarrow{\mathbf{F}}^{\text {ext }} \cdot d \overrightarrow{\mathbf{r}}=\int_{i}^{f} \frac{d\left(m \overrightarrow{\mathbf{V}}_{c m}\right)}{d t} \cdot d \overrightarrow{\mathbf{R}}_{c m}=m \int_{i}^{f} \frac{d\left(\overrightarrow{\mathbf{V}}_{c m}\right)}{d t} \cdot \overrightarrow{\mathbf{V}}_{c m} d t \\
    =\frac{1}{2} m \int_{i}^{f} d\left(\overrightarrow{\mathbf{V}}_{c m} \cdot \overrightarrow{\mathbf{V}}_{c m}\right)=\frac{1}{2} m V_{\mathrm{cm}, f}^{2}-\frac{1}{2} m V_{\mathrm{cm}, i}^{2}=\Delta K_{\text {trans }}
    \end{array} \nonumber \]

    For the rotational motion we go to the center of mass reference frame and we determine the rotational work done i.e. the integral of the z -component of the torque about the center of mass with respect to dθ as we did for fixed axis rotational work. Then

    \[\begin{array}{l}
    \int_{i}^{f}\left(\vec{\tau}_{\mathrm{cm}}^{\mathrm{ext}}\right)_{z} d \theta=\int_{i}^{f} I_{\mathrm{cm}} \frac{d \omega_{\mathrm{cm}, z}}{d t} d \theta=\int_{i}^{f} I_{\mathrm{cm}} d \omega_{\mathrm{cm}, z} \frac{d \theta}{d t}=\int_{i}^{f} I_{\mathrm{cm}} d \omega_{\mathrm{cm}, z} \omega_{\mathrm{cm}, z} \\
    =\frac{1}{2} I_{\mathrm{cm}} \omega_{\mathrm{cm}, f}^{2}-\frac{1}{2} I_{\mathrm{cm}} \omega_{\mathrm{cm}, i}^{2}=\Delta K_{\mathrm{rot}}
    \end{array} \nonumber \]

    In Equation (21.5.2) we expressed our result in terms of the angular speed \(\omega_{\mathrm{cm}}\) because it appears as a square. Therefore we can combine these two separate results, Equations (21.5.1) and (21.5.2), and determine the work-energy theorem for a rotating and translating rigid body that undergoes fixed axis rotation about the center of mass.

    \[\begin{array}{l}
    W=\left(\frac{1}{2} m V_{\mathrm{cm}, \mathrm{f}}^{2}+\frac{1}{2} I_{\mathrm{cm}} \omega_{\mathrm{cm}, f}^{2}\right)-\left(\frac{1}{2} m V_{\mathrm{cm}, \mathrm{f}}^{2}+\frac{1}{2} I_{\mathrm{cm}} \omega_{\mathrm{cm}, i}^{2}\right) \\
    =\Delta K_{\text {tans }}+\Delta K_{\mathrm{rot}}=\Delta K
    \end{array} \nonumber \]

    Equations (21.4.1), (21.4.4), and (21.5.3) are principles that we shall employ to analyze the motion of a rigid bodies undergoing translation and fixed axis rotation about the center of mass.


    This page titled 21.5: Work-Energy Theorem is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.