Skip to main content
Physics LibreTexts

21.4: Translation and Rotation of a Rigid Body Undergoing Fixed Axis Rotation

  • Page ID
    25644
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For the special case of rigid body of mass m, we showed that with respect to a reference frame in which the center of mass of the rigid body is moving with velocity \(\overrightarrow{\mathbf{V}}_{c m}\) all elements of the rigid body are rotating about the center of mass with the same angular velocity \(\overrightarrow{\boldsymbol{\omega}}_{\mathrm{cm}}\) For the rigid body of mass m and momentum \(\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{V}}_{c m}\) the translational equation of motion is still given by Equation (21.2.1), which we repeat in the form

    \[\overrightarrow{\mathbf{F}}^{\mathrm{ext}}=m \overrightarrow{\mathbf{A}}_{\mathrm{cm}} \nonumber \]

    For fixed axis rotation, choose the z -axis as the axis of rotation that passes through the center of mass of the rigid body. We have already seen in our discussion of angular momentum of a rigid body that the angular momentum does not necessary point in the same direction as the angular velocity. However we can take the z -component of Equation (21.3.28)

    \[\tau_{c m, z}^{\mathrm{ext}}=\frac{d L_{c m, z}^{\mathrm{spin}}}{d t} \nonumber \]

    For a rigid body rotating about the center of mass with \(\vec{\omega}_{\mathrm{cm}}=\omega_{\mathrm{cm}, z} \hat{\mathbf{k}}\) the z -component of angular momentum about the center of mass is

    \[L_{c m, z}^{\mathrm{spin}}=I_{\mathrm{cm}} \omega_{\mathrm{cm}, z} \nonumber \]

    The z -component of the rotational equation of motion about the center of mass is

    \[\tau_{c m, z}^{\mathrm{ext}}=I_{\mathrm{cm}} \frac{d \omega_{\mathrm{cm}, z}}{d t}=I_{\mathrm{cm}} \alpha_{\mathrm{cm}, z} \nonumber \]


    This page titled 21.4: Translation and Rotation of a Rigid Body Undergoing Fixed Axis Rotation is shared under a not declared license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.