Skip to main content
Physics LibreTexts

9.1: Introduction Newton’s Second Law and Circular Motion

  • Page ID
    24473
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    I shall now recall to mind that the motion of the heavenly bodies is circular, since the motion appropriate to a sphere is rotation in a circle.

    Nicholas Copernicus

    We have already shown that when an object moves in a circular orbit of radius r with angular velocity \(\overrightarrow{\boldsymbol{\omega}}\) it is most convenient to choose polar coordinates to describe the position, velocity and acceleration vectors. In particular, the acceleration vector is given by

    \[\overrightarrow{\mathbf{a}}(t)=-r\left(\frac{d \theta}{d t}\right)^{2} \hat{\mathbf{r}}(t)+r \frac{d^{2} \theta}{d t^{2}} \hat{\boldsymbol{\theta}}(t) \nonumber \]

    Then Newton’s Second Law, \(\overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}\) can be decomposed into radial \((\hat{\mathbf{r}}-)\) and tangential \((\hat{\boldsymbol{\theta}}-)\) components

    \[F_{r}=-m r\left(\frac{d \theta}{d t}\right)^{2}(\text { circular motion }) \nonumber \]

    \[F_{\theta}=m r \frac{d^{2} \theta}{d t^{2}} \quad(\text { circular motion }) \nonumber \]

    For the special case of uniform circular motion, \(d^{2} \theta / d t^{2}=0\), and so the sum of the tangential components of the force acting on the object must therefore be zero,

    \[F_{\theta}=0 \nonumber \]


    This page titled 9.1: Introduction Newton’s Second Law and Circular Motion is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.