Skip to main content
Physics LibreTexts

19.6: Motion on a Cycloid, Cusps Down

  • Page ID
    7056
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We imagine a particle sliding down the outside of an inverted smooth cycloidal bowl, or a bead sliding down a smooth cycloidal wire. We shall suppose that, at time \(t = 0\), the particle was at the top of the cycloid and was projected forward with a horizontal velocity \(v_0\). See Figure XIX.7.

    alt

    This time, the equations of motion are

    \[ \ddot{s} =g sin \psi \label{19.6.1} \]

    and

    \[ \dfrac{mv^2}{ \rho} = mg \cos \phi - R. \label{19.6.2} \]

    By arguments similar to those made in Section 19.5, we find that

    \[ \ddot{s} = \dfrac{gs}{4a} \label{19.6.3} \]

    The general solution to this is

    \[ s = Ae^{pt} + Be^{-pt}, \label{19.6.4} \]

    where

    \[ p = \sqrt{g/(2a)}. \label{19.6.5} \]

    With the initial condition given (at \( t = 0, s = 0, \dot{s} = v_0 \) ), we can find A and B and hence:

    \[ s = v_{0} \sqrt{\dfrac{a}{g}} (e^{pt} - e^{-pt})\label{19.6.6} \]

    Again proceeding as in Section 19.5, we find for \(R\):

    \[ R = \dfrac{m}{4 \cos \psi} (4ga \cos 2 \psi - v^2_0) . \label{19.6.7} \]

    So – what happens?

    If the constraint is two-sided (bead sliding on a wire) R becomes zero when \( \cos 2 \pi = v^2_0 / (2 /ga), \) and thereafter R is in the opposite direction.

    If the constraint is one-sided (particle sliding down the outside of a smooth cycloidal bowl):

    1. If \(v^2_0\ > 4ga\), the particle loses contact at the moment of projection.
    2. If If \(v^2_0\ < 4ga\) the particle loses contact as soon as \( \cos 2 \pi = v^2_0 /(2ga)\), is very small (i.e. very much smaller than \(\sqrt(2ga) \) ), this will happen when \( \psi = 45 \circ \) ; for faster initial speeds, contact is lost sooner.
    Example \(\PageIndex{1}\)

    A particle is projected horizontally with speed v0 = 1 m s−1 from the vertex of the smooth cycloidal hill

    \( x = a(2\theta + \sin 2 \theta \)

    \( y = 2a \cos ^2 \theta , \)

    where \( a = 2\) m. Assuming that g = 9.8 m s−2, how long does it take to get halfway down the hill (i.e. to \(y = a\))?

    Solution

    We have to use Equation \ref{19.6.6}. With the numerical data given, this is

    \( s = 0.451754(e^{1.565248t} - e^{-1.565248t}). \)

    We can find \(s\) from Equation 19.4.12, which gives us \(s\) = 2.828427 m. If we let we now have to solve 6.26099 = \( \xi - 1 / \xi \), or \(\xi^2 - 6.26099 \xi -1 = 0 \). From this, \( \xi \) = 6.41683 and hence \(t\) = 1.19 s.

    I leave it to the reader to calculate R at this time – and indeed to see whether the particle loses contact with the hill before then. Perhaps the fact that I got a positive real root for \( \xi \) means that we are all right and the particle is still in contact – but I wouldn't be sure of that. I leave it to the reader to investigate further.


    This page titled 19.6: Motion on a Cycloid, Cusps Down is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.