Skip to main content
Physics LibreTexts

2.7: Calculus of Variations with Many Variables

  • Page ID
    29529
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We’ve found the equations defining the curve \(y(x)\) along which the integral

    \[J[y]=\int_{x_{1}}^{x_{2}} f\left(y, y^{\prime}\right) d x\]

    has a stationary value, and we’ve seen how it works in some two-dimensional curve examples.

    But most dynamical systems are parameterized by more than one variable, so we need to know how to go from a curve in \((x,y)\) to one in a space \(\left(x, y_{1}, y_{2}, \ldots y_{n}\right)\), and we need to minimize (say)

    \[J\left[y_{1}, y_{2}, \ldots y_{n}\right]=\int_{x_{1}}^{x_{2}} f\left(y_{1}, y_{2}, \ldots y_{n}, y_{1}^{\prime}, y_{2}^{\prime}, \ldots y_{n}^{\prime}\right) d x\]

    In fact, the generalization is straightforward: the path deviation simply becomes a vector,

    \[\delta \vec{y}(x)=\left(\delta y_{1}(x), \delta y_{2}(x), \ldots, \delta y_{n}(x)\right)\]

    Then under any infinitesimal variation \[\delta \mathbf{y}(x) \text { (writing also } \left.\mathbf{y}=\left(y_{1}, \ldots y_{n}\right)\right)\]

    \[\delta J[\vec{y}]=\int_{x_{1}}^{x_{2}} \sum_{i=1}^{n}\left[\frac{\partial f\left(\vec{y}, \vec{y}^{\prime}\right)}{\partial y_{i}} \delta y_{i}(x)+\frac{\partial f\left(\vec{y}, \vec{y}^{\prime}\right)}{\partial y_{i}^{\prime}} \delta y_{i}^{\prime}(x)\right] d x=0\]

    Just as before, we take the variation zero at the endpoints, and integrate by parts to get now n separate equations for the stationary path:

    \[\frac{\partial f\left(\vec{y}, \vec{y}^{\prime}\right)}{\partial y_{i}}-\frac{d}{d x}\left(\frac{\partial f\left(\vec{y}, \vec{y}^{\prime}\right)}{\partial y_{i}^{\prime}}\right)=0, \quad i=1, \ldots, n\]


    This page titled 2.7: Calculus of Variations with Many Variables is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?