Skip to main content
Physics LibreTexts

7.4: Poisson’s Theorem

  • Page ID
    29571
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    If \(f\) and \(g\) are two constants of the motion (i.e., they both have zero Poisson brackets with the Hamiltonian), then the Poisson bracket \(\begin{equation}
    [f, g]
    \end{equation}\) is also a constant of the motion. Of course, it could be trivial, like \(\begin{equation}
    [p, q]=1
    \end{equation}\) or it could be a function of the original variables. But sometimes it’s a new constant of motion. If f,g are time-independent, the proof follows immediately from Jacobi’s identity. A proof for time dependent functions is given in Landau—it’s not difficult.


    This page titled 7.4: Poisson’s Theorem is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?