Skip to main content
Physics LibreTexts

13.4: *Kepler Orbit Action-Angle Variables

  • Page ID
    29480
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We have not yet covered Kepler orbits, so skip this section for now: it's here to refer back to later. It's from Landau, p 167. For motion confined to a plane, we can take the central potential analysis with \(\theta=\pi / 2, p_{\theta}=0 \text { and } p_{\phi}=m v_{\phi} r\), the angular momentum, so the Hamiltonian is

    \begin{equation}H=\dfrac{1}{2 m}\left(p_{r}^{2}+\dfrac{p_{\phi}^{2}}{r^{2}}\right)+V(r)\end{equation}

    The Hamilton-Jacobi equation is therefore

    \begin{equation}
    \dfrac{1}{2 m}\left(\dfrac{\partial S_{0}}{\partial r}\right)^{2}+V(r)+\dfrac{1}{2 m r^{2}}\left(\dfrac{\partial S_{0}}{\partial \phi}\right)^{2}=E
    \end{equation}

    So, following the previous analysis of separation of variables for motion in a central potential, here

    \begin{equation}
    S_{0}(r, \phi)=S_{r}(r)+S_{\phi}(\phi)=S_{r}(r)+p_{\phi} \phi
    \end{equation}

    The action variable for the angular motion is just the angular momentum itself,

    \begin{equation}
    I_{\phi}=\dfrac{1}{2 \pi} \int_{0}^{2 \pi} p_{\phi} d \phi=L
    \end{equation}

    And the radial action variable, with potential \(V(r)=-k / r, \text { is }\)

    \begin{equation}
    I_{r}=2 \dfrac{1}{2 \pi} \int_{r_{\text {min }}}^{r_{\max }} \sqrt{\left[2 m\left(E+\dfrac{k}{r}\right)-\dfrac{L^{2}}{r^{2}}\right]} d r=-L+k \sqrt{\dfrac{m}{2|E|}}
    \end{equation}

    (Details on doing the integral are given in the Appendix, Mathematica can do it too.)

    So the energy is

    \begin{equation}
    E=-\dfrac{m k^{2}}{2\left(I_{r}+I_{\phi}\right)^{2}}
    \end{equation}

    The motion is degenerate: the two fundamental frequencies coincide, \(\partial I_{\phi} / \partial E=\partial I_{r} / \partial E\)

    This has major consequences in quantum mechanics: the actions are all quantized in units of Planck's constant, for the hydrogen atom, from the formula above, the energy depends only on the sum of the quantum numbers: above the ground state, energy levels are degenerate, which is why the energy spectrum has the deceptively simple form so successfully explained by the Bohr model.

    The orbital parameters, semi-latus rectum and eccentricity, from \(|E|=k / 2 a \text { and } L^{2}=k m a\left(1-e^{2}\right)\), are

    \begin{equation}
    \mathrm{l}=\dfrac{I_{\phi}^{2}}{m k}, \quad e^{2}=1-\left(\dfrac{I_{\phi}}{I_{\phi}+I_{r}}\right)^{2}
    \end{equation}

    Recall the semi-major axis is given by \(|E|=k / 2 a\) and from the above expression

    \begin{equation}
    \dfrac{b}{a}=\dfrac{I_{\phi}}{I_{\phi}+I_{r}}=\dfrac{|m|}{n}
    \end{equation}

    in the hydrogen atom quantum number notation.

    Appendix: Doing the Integral for The Radial Action Ir

    The integral can be put in the form

    \begin{equation}
    I=\dfrac{C}{2 \pi} \int_{\alpha}^{\beta} \sqrt{(x-\alpha)(\beta-x)} \dfrac{d x}{x}
    \end{equation}

    which can be integrated by taking a contour encircling the cut from \(\alpha\) to \(\beta\). The integral will have a contribution from the pole at the origin equal to \(\begin{equation}C \sqrt{-\alpha \beta}\end{equation}\) and another from the circle at infinity, which is

    \begin{equation}
    I_{\infty}=\dfrac{C}{2 \pi} \oint\left(1-\dfrac{\alpha}{2 z}\right)\left(1-\dfrac{\beta}{2 z}\right) i d z=-\dfrac{C(\alpha+\beta)}{2}
    \end{equation}

    Equating coefficients (multiplying the term inside the square root by \(r^{2}\))

    \begin{equation}C^{2}=2 m|E|, \quad C^{2}(\alpha+\beta)=2 m k, \quad C^{2} \alpha \beta=L^{2}\end{equation}

    So the contribution from the origin gives the \(\begin{equation}
    -L, \text { the circle at infinity } m k / \sqrt{2 m}|E|=k \sqrt{m / 2}|E|
    \end{equation}\).


    This page titled 13.4: *Kepler Orbit Action-Angle Variables is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?