Skip to main content
Physics LibreTexts

13.4: *Kepler Orbit Action-Angle Variables

  • Page ID
    29480
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We have not yet covered Kepler orbits, so skip this section for now: it's here to refer back to later. It's from Landau, p 167. For motion confined to a plane, we can take the central potential analysis with \(\theta=\pi / 2, p_{\theta}=0 \text { and } p_{\phi}=m v_{\phi} r\), the angular momentum, so the Hamiltonian is

    \begin{equation}H=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\phi}^{2}}{r^{2}}\right)+V(r)\end{equation}

    The Hamilton-Jacobi equation is therefore

    \begin{equation}
    \frac{1}{2 m}\left(\frac{\partial S_{0}}{\partial r}\right)^{2}+V(r)+\frac{1}{2 m r^{2}}\left(\frac{\partial S_{0}}{\partial \phi}\right)^{2}=E
    \end{equation}

    So, following the previous analysis of separation of variables for motion in a central potential, here

    \begin{equation}
    S_{0}(r, \phi)=S_{r}(r)+S_{\phi}(\phi)=S_{r}(r)+p_{\phi} \phi
    \end{equation}

    The action variable for the angular motion is just the angular momentum itself,

    \begin{equation}
    I_{\phi}=\frac{1}{2 \pi} \int_{0}^{2 \pi} p_{\phi} d \phi=L
    \end{equation}

    And the radial action variable, with potential \(V(r)=-k / r, \text { is }\)

    \begin{equation}
    I_{r}=2 \frac{1}{2 \pi} \int_{r_{\text {min }}}^{r_{\max }} \sqrt{\left[2 m\left(E+\frac{k}{r}\right)-\frac{L^{2}}{r^{2}}\right]} d r=-L+k \sqrt{\frac{m}{2|E|}}
    \end{equation}

    (Details on doing the integral are given in the Appendix, Mathematica can do it too.)

    So the energy is

    \begin{equation}
    E=-\frac{m k^{2}}{2\left(I_{r}+I_{\phi}\right)^{2}}
    \end{equation}

    The motion is degenerate: the two fundamental frequencies coincide, \(\partial I_{\phi} / \partial E=\partial I_{r} / \partial E\)

    This has major consequences in quantum mechanics: the actions are all quantized in units of Planck's constant, for the hydrogen atom, from the formula above, the energy depends only on the sum of the quantum numbers: above the ground state, energy levels are degenerate, which is why the energy spectrum has the deceptively simple form so successfully explained by the Bohr model.

    The orbital parameters, semi-latus rectum and eccentricity, from \(|E|=k / 2 a \text { and } L^{2}=k m a\left(1-e^{2}\right)\), are

    \begin{equation}
    \mathrm{l}=\frac{I_{\phi}^{2}}{m k}, \quad e^{2}=1-\left(\frac{I_{\phi}}{I_{\phi}+I_{r}}\right)^{2}
    \end{equation}

    Recall the semi-major axis is given by \(|E|=k / 2 a\) and from the above expression

    \begin{equation}
    \frac{b}{a}=\frac{I_{\phi}}{I_{\phi}+I_{r}}=\frac{|m|}{n}
    \end{equation}

    in the hydrogen atom quantum number notation.

    Appendix: Doing the Integral for The Radial Action Ir

    The integral can be put in the form

    \begin{equation}
    I=\frac{C}{2 \pi} \int_{\alpha}^{\beta} \sqrt{(x-\alpha)(\beta-x)} \frac{d x}{x}
    \end{equation}

    which can be integrated by taking a contour encircling the cut from \(\alpha\) to \(\beta\). The integral will have a contribution from the pole at the origin equal to \(\begin{equation}C \sqrt{-\alpha \beta}\end{equation}\) and another from the circle at infinity, which is

    \begin{equation}
    I_{\infty}=\frac{C}{2 \pi} \oint\left(1-\frac{\alpha}{2 z}\right)\left(1-\frac{\beta}{2 z}\right) i d z=-\frac{C(\alpha+\beta)}{2}
    \end{equation}

    Equating coefficients (multiplying the term inside the square root by \(r^{2}\))

    \begin{equation}C^{2}=2 m|E|, \quad C^{2}(\alpha+\beta)=2 m k, \quad C^{2} \alpha \beta=L^{2}\end{equation}

    So the contribution from the origin gives the \(\begin{equation}
    -L, \text { the circle at infinity } m k / \sqrt{2 m}|E|=k \sqrt{m / 2}|E|
    \end{equation}\).


    This page titled 13.4: *Kepler Orbit Action-Angle Variables is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?