Skip to main content
Physics LibreTexts

18.1: More General Energy Exchange

  • Page ID
    29512
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We’ll derive a formula for the energy fed into an oscillator by an arbitrary time-dependent external force.

    The equation of motion can be written

    \(\frac{d}{d t}(\dot{x}+i \omega x)-i \omega(\dot{x}+i \omega x)=\frac{1}{m} F(t)\)

    and defining \(\xi=\dot{x}+i \omega x\), this is

    \(d \xi / d t-i \omega \xi=F(t) / m\)

    This first-order equation integrates to

    \(\xi(t)=e^{i \omega t}\left(\int_{0}^{t} \frac{1}{m} F\left(t^{\prime}\right) e^{-i \omega t^{\prime}} d t^{\prime}+\xi_{0}\right)\)

    The energy of the oscillator is

    \(E=\frac{1}{2} m\left(\dot{x}^{2}+\omega^{2} x^{2}\right)=\frac{1}{2} m|\xi|^{2}\)

    So if we drive the oscillator over all time, with beginning energy zero,

    \(E=\frac{1}{2 m}\left|\int_{-\infty}^{\infty} F(t) e^{-i \omega t} d t\right|^{2}\)

    This is equivalent to the quantum mechanical time-dependent perturbation theory result: \(\xi, \xi^{*}\) are equivalent to the annihilation and creation operators.


    This page titled 18.1: More General Energy Exchange is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?