Skip to main content
Physics LibreTexts

21.2: Finding the Effective Potential Generated by the Oscillating Force

  • Page ID
    30497
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    As stated above, our system is a particle of mass \(m\) moving in one dimension in a time-independent potential \(V(x)\) and subject to a rapidly oscillating force \(f=f_{1} \cos \omega t+f_{2} \sin \omega t\).

    The oscillation’s strength and frequency are such that the particle only moves a small distance in \(V(x)\) during one cycle, and the oscillation is much faster than any oscillation possible in the potential alone.

    The equation of motion is

    \begin{equation}
    m \ddot{x}=-d V / d x+f
    \end{equation}

    The particle will follow a path

    \begin{equation}
    x(t)=X(t)+\xi(t)
    \end{equation}

    where \(\xi(t)\) describes rapid oscillations about a smooth path \(X(t)\), and the average value \(\overline{\xi(t)} \text { of } \xi(t)\) over a period \(2 \pi / \omega\) is zero.

    Expanding to first order in \(\xi\),

    \begin{equation}
    m \ddot{X}+m \ddot{\xi}=-\frac{d V}{d x}-\xi \frac{d^{2} V}{d x^{2}}+f(X, t)+\xi \frac{\partial f}{\partial X}
    \end{equation}

    This equation has smooth terms and rapidly oscillating terms on both sides, and we can equate them separately. The leading oscillating terms are

    \begin{equation}
    m \ddot{\xi}=f(X, t)
    \end{equation}

    We’ve dropped the terms on the right of order \(\xi, \text { but kept } \ddot{\xi}, \text { because } \ddot{\xi} \sim \omega^{2} \xi \gg \xi\).

    So to leading order in the rapid oscillation,

    \begin{equation}
    \xi=-f / m \omega^{2}
    \end{equation}

    Now, averaging the full equation of motion with respect to time (smoothing out the jiggle, matching the slow-moving terms), the \(m \ddot{\xi}\) on the left and the \(f(X, t)\) on the right both disappear (but cancel each other anyway), the \(\xi d^{2} V / d x^{2}\) term averages to zero on the assumption that the variation of \(d^{2} V / d x^{2}\) over a cycle of the fast oscillation is negligible, but we cannot drop the average

    \begin{equation}
    \overline{\xi \frac{\partial f}{\partial X}}=-\frac{1}{m \omega^{2}} \overline{f \frac{\partial f}{\partial X}}=-\frac{1}{m \omega^{2}} \nabla_{X} \overline{f^{2}}
    \end{equation}

    Incorporating this nonzero term, we have an equation of “slow motion”

    \begin{equation}
    m \ddot{X}=-d V_{\mathrm{eff}} / d X
    \end{equation}

    where, using \(|\dot{\xi}|=|f| / m \omega\),

    \begin{equation}
    V_{\mathrm{eff}}=V+\overline{f^{2}} / 2 m \omega^{2}=V+\frac{1}{2} m \overline{\dot{\xi}^{2}}
    \end{equation}

    The effective potential is the original plus a term proportional to the kinetic energy of the oscillation.


    This page titled 21.2: Finding the Effective Potential Generated by the Oscillating Force is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?