Skip to main content
Physics LibreTexts

21.2: Finding the Effective Potential Generated by the Oscillating Force

  • Page ID
    30497
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    As stated above, our system is a particle of mass \(m\) moving in one dimension in a time-independent potential \(V(x)\) and subject to a rapidly oscillating force \(f=f_{1} \cos \omega t+f_{2} \sin \omega t\).

    The oscillation’s strength and frequency are such that the particle only moves a small distance in \(V(x)\) during one cycle, and the oscillation is much faster than any oscillation possible in the potential alone.

    The equation of motion is

    \begin{equation}
    m \ddot{x}=-d V / d x+f
    \end{equation}

    The particle will follow a path

    \begin{equation}
    x(t)=X(t)+\xi(t)
    \end{equation}

    where \(\xi(t)\) describes rapid oscillations about a smooth path \(X(t)\), and the average value \(\overline{\xi(t)} \text { of } \xi(t)\) over a period \(2 \pi / \omega\) is zero.

    Expanding to first order in \(\xi\),

    \begin{equation}
    m \ddot{X}+m \ddot{\xi}=-\dfrac{d V}{d x}-\xi \dfrac{d^{2} V}{d x^{2}}+f(X, t)+\xi \dfrac{\partial f}{\partial X}
    \end{equation}

    This equation has smooth terms and rapidly oscillating terms on both sides, and we can equate them separately. The leading oscillating terms are

    \begin{equation}
    m \ddot{\xi}=f(X, t)
    \end{equation}

    We’ve dropped the terms on the right of order \(\xi, \text { but kept } \ddot{\xi}, \text { because } \ddot{\xi} \sim \omega^{2} \xi \gg \xi\).

    So to leading order in the rapid oscillation,

    \begin{equation}
    \xi=-f / m \omega^{2}
    \end{equation}

    Now, averaging the full equation of motion with respect to time (smoothing out the jiggle, matching the slow-moving terms), the \(m \ddot{\xi}\) on the left and the \(f(X, t)\) on the right both disappear (but cancel each other anyway), the \(\xi d^{2} V / d x^{2}\) term averages to zero on the assumption that the variation of \(d^{2} V / d x^{2}\) over a cycle of the fast oscillation is negligible, but we cannot drop the average

    \begin{equation}
    \overline{\xi \dfrac{\partial f}{\partial X}}=-\dfrac{1}{m \omega^{2}} \overline{f \dfrac{\partial f}{\partial X}}=-\dfrac{1}{m \omega^{2}} \nabla_{X} \overline{f^{2}}
    \end{equation}

    Incorporating this nonzero term, we have an equation of “slow motion”

    \begin{equation}
    m \ddot{X}=-d V_{\mathrm{eff}} / d X
    \end{equation}

    where, using \(|\dot{\xi}|=|f| / m \omega\),

    \begin{equation}
    V_{\mathrm{eff}}=V+\overline{f^{2}} / 2 m \omega^{2}=V+\dfrac{1}{2} m \overline{\dot{\xi}^{2}}
    \end{equation}

    The effective potential is the original plus a term proportional to the kinetic energy of the oscillation.


    This page titled 21.2: Finding the Effective Potential Generated by the Oscillating Force is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?