Skip to main content
Physics LibreTexts

21.5: Pendulum with Top Point Oscillating Rapidly in a Horizontal Direction

  • Page ID
    30500
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Take the coordinates of \(m\) to be

    \begin{equation}
    x=a \cos \Omega t+\ell \sin \phi, y=\ell \cos \phi
    \end{equation}

    The Lagrangian, omitting the term depending only on time, and performing an integration by parts and dropping the total derivative term, (following the details of the analysis above for the vertically driven pendulum) is

    \begin{equation}
    L=\frac{1}{2} m \ell^{2} \dot{\phi}^{2}+m a \ell \Omega^{2} \cos \Omega t \sin \phi+m g \ell \cos \phi
    \end{equation}

    It follows that \(f=m \ell a \Omega^{2} \cos \Omega t \cos \phi\) (the only difference in f from the vertically driven point of support is the final \(\cos \phi \text { instead of } \sin \phi)\)) and

    \begin{equation}
    V_{\mathrm{eff}}=m g \ell\left[-\cos \phi+\overline{f^{2}} / 2 m \omega^{2}\right]=m g \ell\left[-\cos \phi+\left(a^{2} \Omega^{2} / 4 g \ell\right) \cos ^{2} \phi\right]
    \end{equation}

    If \(a^{2} \Omega^{2}<2 g \ell, \quad \phi=0 \text { is stable. If } a^{2} \Omega^{2}>2 g \ell \text { the stable position is } \cos \phi=2 g \ell / a^{2} \Omega^{2}\)

    That is, at high frequency, the rest position is at an angle to the vertical!

    In this case, the ponderomotive force towards the direction of least angular quiver (in this case the horizontal direction) is balanced by the gravitational force.


    This page titled 21.5: Pendulum with Top Point Oscillating Rapidly in a Horizontal Direction is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?