Skip to main content
Physics LibreTexts

28.3: Using Energy and Angular Momentum Conservation

  • Page ID
    30677
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We can also gain some insight into the motion of the free spinning top just from conservation of energy and angular momentum.

    The equations are:

    \begin{equation}
    \begin{array}{l}
    \frac{L_{1}^{2}}{I_{1}}+\frac{L_{2}^{2}}{I_{1}}+\frac{L_{3}^{2}}{I_{3}}=2 E \\
    L_{1}^{2}+L_{2}^{2}+L_{3}^{2}=L^{2}
    \end{array}
    \end{equation}

    Visualize these equations as surfaces in \(\left(L_{1}, L_{2}, L_{3}\right)\) space.

    The second is a sphere, radius L, centered at the origin.

    The first is an ellipsoid, also centered at the origin, with semimajor axes

    \begin{equation}
    \left(\sqrt{2 E I_{1}}, \sqrt{2 E I_{1}}, \sqrt{2 E I_{3}}\right)
    \end{equation}

    Do these two surfaces intersect?

    The answer is yes, they always do.

    To see that, assume first that \(\begin{equation}I_{1}>I_{3}, \text { then } 2 E I_{1} \geq L, \text { and further } L \geq 2 E I_{3}\end{equation}\). The sphere intersects the ellipsoid in two circles. These degenerate to one circle, the equator, when \(L_{3}=0\), and two points (the poles) when \(L_{1}=L_{2}=0\).

    We conclude that the path of the angular momentum vector is a circle around the axis of symmetry in the body coordinate system, and since we know that relative to the fixed space axes the angular momentum is in fact constant, this means that actually the body is precessing about its axis of symmetry as seen by an observer.


    This page titled 28.3: Using Energy and Angular Momentum Conservation is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?