Skip to main content
Library homepage
 
Physics LibreTexts

7.9: Generalized energy and total energy

  • Page ID
    14077
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The generalized kinetic energy, equation \((7.6.4)\), can be used to write the generalized Lagrangian as

    \[L(\mathbf{q},\mathbf{ \dot{q}},t)=T_{2}(\mathbf{q},\mathbf{\dot{q}},t)+T_{1}(\mathbf{q},\mathbf{ \dot{q}},t)+T_{0}(\mathbf{q},t)-U(\mathbf{q},t)\]

    If the potential energy \(U\) does not depend explicitly on velocities \(\dot{q }_{i}\) or time, then

    \[ \label{7.42} p_{j}=\frac{\partial L}{\partial \dot{q}_{j}}=\frac{\partial \left( T-U\right) }{\partial \dot{q}_{j}}=\frac{\partial T}{\partial \dot{q}_{j}}\]

    Equation \ref{7.42} can be used to write the Hamiltonian, equation \((7.7.6)\), as

    \[H\left( \mathbf{q,p,}t\right) =\sum_{i}\left( \dot{q}_{j}\frac{\partial T_{2} }{\partial \dot{q}_{j}}\right) +\sum_{i}\left( \dot{q}_{j}\frac{\partial T_{1}}{\partial \dot{q}_{j}}\right) +\sum_{i}\left( \dot{q}_{j}\frac{ \partial T_{0}}{\partial \dot{q}_{j}}\right) -L(\mathbf{q},\mathbf{\dot{q}} ,t)\]

    Using equations \((7.6.12)\), \((7.6.13)\), \((7.6.14)\) gives that the total generalized Hamiltonian \(H\left( \mathbf{q,p,}t\right)\) equals

    \[H\left( \mathbf{q,p,}t\right) =2T_{2}+T_{1}-(T_{2}+T_{1}+T_{0}-U)=T_{2}-T_{0}+U \label{7.44}\]

    But the sum of the kinetic and potential energies equals the total energy. Thus Equation \ref{7.44} can be rewritten in the form

    \[H\left( \mathbf{q,p,}t\right) =(T+U)-(T_{1}+2T_{0})=E-(T_{1}+2T_{0})\]

    Note that Jacobi’s generalized energy and the Hamiltonian do not equal the total energy \(E\). However, in the special case where the transformation is scleronomic, then \(T_{1}=T_{0}=0,\) and if the potential energy \(U\) does not depend explicitly of \(\dot{q}_{i}\), then the generalized energy (Hamiltonian) equals the total energy, that is, \(H=E.\) Recognition of the relation between the Hamiltonian and the total energy facilitates determining the equations of motion.


    This page titled 7.9: Generalized energy and total energy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?