Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

16.6: Electromagnetic Field Theory

( \newcommand{\kernel}{\mathrm{null}\,}\)

Maxwell stress tensor

Analytical formulations for continuous systems, developed for describing elasticity, are generally applicable when applied to other fields, such as the electromagnetic field. The use of the Maxwell’s stress tensor T, to describe momentum in the electromagnetic field, is an important example of the application of continuum mechanics in field theory.

The Lorentz force can be written as

F=ρ(E+v×B)dτ=(ρE+J×B)dτ=fdτ

where the force density f is defined to be

f=(ρE+J×B)

Maxwell’s equations

ρ=ϵ0EJ=1μ0×Bϵ0Et

can be used to eliminate the charge and current densities in Equation ???

f=ϵ0(E)E+(1μ0×Bϵ0Et)×B

Vector calculus gives that

t(E×B)=Et×B+E×Bt

while Faraday’s law gives

Bt=×E

Equation ??? allows Equation ??? to be rewritten as

Et×B=+t(E×B)E×Bt=+t(E×B)+E×(×E)

Equation ??? can be inserted into Equation ???. In addition, a term 1μ0(B)B can be added since B=0 which allows equation 16.60 to be written in the symmetric form

f=ϵ0(E)E+1μ0(B)B+1μ0(×B)×Bϵ0Et×B=ϵ0(E)E+1μ0(B)B+1μ0(×B)×Bϵ0t(E×B)ϵ0E×(×E)

Using the vector identity

(AB)=A×(×B)+B×(×A)+(A)B+(B)A

Let A=B=E, then

(E2)=2E×(×E)+2(E)E

That is

E×(×E)=12(E2)(E)E

Similarly

B×(×B)=12(B2)(B)B

Inserting equations ??? and ??? into Equation 16.6.9 gives

f=ϵ0[(E)E+(E)E12E2]+1μ0[(B)B+(B)B12B2]ϵ0t(E×B)

This complicated formula can be simplified by defining the rank-2 Maxwell stress tensor T which has components

Tijϵ0(EiEj12δijE2)+1μ0(BiBj12δijB2)

The inner product of the del operator and the Maxwell stress tensor is a vector with j components of

(T)j=ϵ0[(E)Ej+(E)Ej122jE2]+1μ0[(B)Bj+(B)Bj122jB2]

The above definition of the Maxwell stress tensor, plus the Poynting vector S=1μ0(E×B), allows the force density Equation ??? to be written in the form

f=Tϵ0μ0St

The divergence theorem allows the total force, acting of the volume τ, to be written in the form

F=(Tϵ0μ0St)dτ=Tdaϵ0μ0ddtSdτ

Note that, if the Poynting vector is time independent, then the second term in Equation 16.6.20 is zero and the Maxwell stress tensor T is the force per unit area, (stress) acting on the surface. The fact that T is a rank-2 tensor is apparent since the stress represents the ratio of the force-density vector df and the infinitessimal area vector da, which do not necessarily point in the same directions.

Momentum in the electromagnetic field

Chapter 7.2 showed that the electromagnetic field carries a linear momentum qA where q is the charge on a body and A is the electromagnetic vector potential. It is useful to use the Maxwell stress tensor to express the momentum density directly in terms of the electric and magnetic fields.

Newton’s law of motion can be used to write equation Equation 16.6.20 as

F=dpmechdt=Tdaϵ0μ0ddtSdτ

where p is the total mechanical linear momentum of the volume τ. Equation ??? implies that the electromagnetic field carries a linear momentum

pfield=ϵ0μ0Sdτ

The Tda term in Equation ??? is the momentum per unit time flowing into the closed surface. In field theory it can be useful to describe the behavior in terms of the momentum flux density π. Thus the momentum flux density πfield in the electromagnetic field is

πfield=ϵ0μ0S

Then Equation ??? implies that the total momentum flux density π=πmech+πfield is related to Maxwell’s stress tensor by

t(πmech+πfield)=T

That is, like the elasticity stress tensor, the divergence of Maxwell’s stress tensor T equals the rate of change of the total momentum density, that is, T is the momentum flux density.

This discussion of the Maxwell stress tensor and its relation to momentum in the electromagnetic field illustrates the role that analytical formulations of classical mechanics can play in field theory


This page titled 16.6: Electromagnetic Field Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?