Skip to main content
Physics LibreTexts

2.4: A Preview of Some Modern Physics

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    “Mommy, why do you and Daddy have to go to work?” “To make money, sweetie-pie.” “Why do we need money?” “To buy food.” “Why does food cost money?” When small children ask a chain of “why” questions like this, it usually isn't too long before their parents end up saying something like, “Because that's just the way it is,” or, more honestly, “I don't know the answer.”

    The same happens in physics. We may gradually learn to explain things more and more deeply, but there's always the possibility that a certain observed fact, such as conservation of mass, will never be understood on any deeper level. Science, after all, uses limited methods to achieve limited goals, so the ultimate reason for all existence will always be the province of religion. There is, however, an appealing explanation for conservation of mass, which is atomism, the theory that matter is made of tiny, unchanging particles. The atomic hypothesis dates back to ancient Greece, but the first solid evidence to support it didn't come until around the eighteenth century, and individual atoms were never detected until about 1900. The atomic theory implies not only conservation of mass, but a couple of other things as well.

    First, it implies that the total mass of one particular element is conserved. For instance, lead and gold are both elements, and if we assume that lead atoms can't be turned into gold atoms, then the total mass of lead and the total mass of gold are separately conserved. It's as though there was not just a law against pickpocketing, but also a law against surreptitiously moving money from one of the victim's pockets to the other. It turns out, however, that although chemical reactions never change one type of atom into another, transmutation can happen in nuclear reactions, such as the ones that created most of the elements in your body out of the primordial hydrogen and helium that condensed out of the aftermath of the Big Bang.

    Second, atomism implies that mass is quantized, meaning that only certain values of mass are possible and the ones in between can't exist. We can have three atoms of gold or four atoms of gold, but not three an a half. Although quantization of mass is a natural consequence of any theory in which matter is made up of tiny particles, it was discovered in the twentieth century that other quantities, such as energy, are quantized as well, which had previously not been suspected.


    Is money quantized?

    (answer in the back of the PDF version of the book)

    If atomism is starting to make conservation of mass seem inevitable to you, then it may disturb you to know that Einstein discovered it isn't really conserved. If you put a 50-gram iron nail in some water, seal the whole thing up, and let it sit on a fantastically precise balance while the nail rusts, you'll find that the system loses about \(6\times10^{-12}\) kg of mass by the time the nail has turned completely to rust. This has to do with Einstein's famous equation \(E=mc^2\). Rusting releases heat energy, which then escapes out into the room. Einstein's equation states that this amount of heat, \(E\), is equivalent to a certain amount of mass, \(m\). The \(c\) in the \(c^2\) is the speed of light, which is a large number, and a large amount of energy is therefore equivalent to a very small amount of mass, so you don't notice nonconservation of mass under ordinary conditions. What is really conserved is not the mass, \(m\), but the mass-plus-energy, \(E+mc^2\). The point of this discussion is not to get you to do numerical exercises with \(E=mc^2\) (at this point you don't even know what units are used to measure energy), but simply to point out to you the empirical nature of the laws of physics. If a previously accepted theory is contradicted by an experiment, then the theory needs to be changed. This is also a good example of something called the correspondence principle, which is a historical observation about how scientific theories change: when a new scientific theory replaces an old one, the old theory is always contained within the new one as an approximation that works within a certain restricted range of situations. Conservation of mass is an extremely good approximation for all chemical reactions, since chemical reactions never release or consume enough energy to change the total mass by a large percentage. Conservation of mass would not have been accepted for 110 years as a fundamental principle of physics if it hadn't been verified over and over again by a huge number of accurate experiments.

    Contributors and Attributions

    Benjamin Crowell (Fullerton College). Conceptual Physics is copyrighted with a CC-BY-SA license.

    This page titled 2.4: A Preview of Some Modern Physics is shared under a CC BY-SA license and was authored, remixed, and/or curated by Benjamin Crowell.

    • Was this article helpful?