2.8: Appendix 2A
- Page ID
- 23150
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)2.8 Appendix 2A.
It was pointed out in sections 2.2.1 and 2.2.2 above that the potential function, V(\(\vec R\)) generated by a distribution of electric dipoles, P(\(\vec r\)), can be calculated in two ways:
\[\text { (1) } \quad \mathrm{V}(\overrightarrow{\mathrm{R}})=\frac{1}{4 \pi \epsilon_{0}} \int \int \int_{S_{\text {pace }} d V_{\text {vol }}} \frac{(-\operatorname{div}(\overrightarrow{\mathrm{P}}))}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}. \label{2.36}\]
This equation for the potential function is calculated from the distribution of bound charges, ρb = −div(\(\vec P\)). The second equation for the potential function can be written as the potential due to point dipoles \(\vec P\)dVvol summed over the entire distribution of dipoles:
\[\text { (2) } \quad \mathrm{V}(\overrightarrow{\mathrm{R}})=\frac{1}{4 \pi \epsilon_{0}} \int \int \int_{S_{p a c e}} d V_{\text {vol }} \frac{\overrightarrow{\mathrm{P}} \cdot(\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}})}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|^{3}}. \label{2.37}\]
These two formulae, Equations (\ref{2.36} and \ref{2.37}), give the same potential function apart from a possible constant that has no effect on the resulting electric field. This statement can be proved by applying Gauss’ Theorem to the function
\[\operatorname{div}\left(\frac{\overrightarrow{\mathrm{P}}}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}\right)=\operatorname{div}\left(\frac{\overrightarrow{\mathrm{P}}}{\sqrt{[X-x]^{2}+[Y-y]^{2}+[Z-z]^{2}}}\right). \nonumber\]
The divergence is calculated with respect to the co-ordinates of the source point, (x,y,z):
\[\operatorname{div}\left(\frac{\overrightarrow{\mathrm{P}}}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}\right)=\frac{\partial}{\partial x}\left(\frac{\mathrm{P}_{x}}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}\right)+\frac{\partial}{\partial y}\left(\frac{\mathrm{P}_{y}}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}\right)+\frac{\partial}{\partial z}\left(\frac{\mathrm{P}_{z}}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}\right).\nonumber\]
By direct differentiation one can readily show that
\[\operatorname{div}\left(\frac{\overrightarrow{\mathrm{P}}}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}\right)=\frac{\operatorname{div}(\overrightarrow{\mathrm{P}})}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}+\frac{\overrightarrow{\mathrm{P}} \cdot(\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}})}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|^{3}}.\nonumber\]
Remember that the differentiations are with respect to the co-ordinates of \(\vec r\), (x,y,z), and not with respect to the observer co-ordinates \(\vec R\), (X,Y,Z). Integrate the above equation over a volume, Vvol, bounded by a surface S and apply Gauss’ Theorem, section 1.3.3, to the term on the left. The result is
\[\int \int_{S} \frac{d S(\overrightarrow{\mathrm{P}} \cdot \hat{\mathbf{n}})}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}=\int \int \int_{V_{\text {rot }}} \frac{d V_{\text {vol }} d i v(\overrightarrow{\mathrm{P}})}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}+\int \int \int_{V_{\text {rot }}} \frac{d V_{\text {vol }} \overrightarrow{\mathrm{P}} \cdot(\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}})}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|^{3}}.\nonumber\]
Now let the volume Vvol become very large so that the surface S recedes to infinity. If the polarization distribution is limited to a finite region of space, as we shall assume, the surface integral must vanish because the polarization density on the surface, S, is zero. We are left with the identity
\[-\int \int \int_{V_{\text {vol }}} \frac{d V_{\text {vol }} d i v(\overrightarrow{\mathrm{P}})}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|}=\int \int \int_{V_{\text {red }}} \frac{d V_{\text {vol }}}{|\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}|^{3}} \cdot(\overrightarrow{\mathrm{R}}-\overrightarrow{\mathrm{r}}) \label{2.38}\]
Upon multiplying both sides of Equation (\ref{2.38}) by \(1 /\left(4 \pi \epsilon_{0}\right)\) one obtains the integral of Equation (\ref{2.36}) on the left and the integral of Equation (\ref{2.37}) on the right. It follows that the same value for the potential will be obtained, aside from a possible unimportant constant, whether one uses the formulation based upon the potential for a point charge or the formulation based upon the potential function for a point dipole.