Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

8.6: Appendix. Integration of the Equations

( \newcommand{\kernel}{\mathrm{null}\,}\)

Numerical integration of equations 8.5.22-24 is straightforward (by Simpson’s rule, for example) except near perineme (x=1) and aponeme (x=x2), where the integrands become infinite. Near perineme, however, we can substitute x=1+ξ and near aponeme we can substitute x=x2(1ξ), and we can expand the integrands as power series in ξ and integrate term by term. I gather here the following results for the intervals x=1 to x=1+ϵand x=x2ϵ to x=x2, where ϵ must be chosen to be sufficiently small that ϵ4 is smaller than the precision required.

I1=1+ϵ1[v20(11/x2)+2w0lnx(lnx)2]1/2dx=M(1+13A1ϵ+15B1ϵ2+17C1ϵ3+...)

I2=1+ϵ1[v20(11/x2)+2w0lnx(lnx)2]1/2lnx dx=M(13ϵ+15D1ϵ2+17E1ϵ3+...)

I3=1+ϵ1[v20(11/x2)+2w0lnx(lnx)2]1/2x2dx=M(1+13F1ϵ+15G1ϵ2+17H1ϵ3+...)

I4=x2x2ϵ[v20(11/x2)+2w0lnx(lnx)2]1/2dx=N[1+13A2ϵ/x2+15B2(ϵ/x2)2+17C2(ϵ/x2)3+...)

I5=x2x2ϵ[v20(11/x2)+2w0lnx(lnx)2]1/2lnx dx=I4lnx2N[13ϵ/x2+15D2(ϵ/x2)2+17E2(ϵ/x2)3+...]

I6=x2x2ϵ[v20(11/x2)+2w0lnx(lnx)2]1/2x2dx=N[1+13F2ϵ/x2+15G2(ϵ/x2)2+17H2(ϵ/x2)3+...]/x22

The constants are defined as follows.

M=(2ϵv20+w0)1/2

N=(2ϵx2lnx2(v0/x2)2w0)1/2

a1=3v20+w0+12(v20+w0)

b1=4v20+23w0+12(v20+w0)

c1=5v20+12w0+11122(v20+w0)

a2=3(v0/x2)2+w0lnx2+12((v0/x2)2+w0lnx2)

b2=4(v0/x2)2+23w0lnx2+12((v0/x2)2+w0lnx2)

c2=5(v0/x2)2+12w012lnx2+11122((v0/x2)2+w0lnx2)

An=12an

Bn=12bn+38a2n

Cn=12cn+34anbn516a3n

Dn=An+12(1)n

En=Bn+12(1)nAn+13

Fn=An+2(1)n

Gn=Bn+2(1)nAn+3

Hn=Cn+2(1)nBn+3An+4(1)n

n=1,2


This page titled 8.6: Appendix. Integration of the Equations is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?