8.6: Appendix. Integration of the Equations
( \newcommand{\kernel}{\mathrm{null}\,}\)
Numerical integration of equations 8.5.22-24 is straightforward (by Simpson’s rule, for example) except near perineme (x=1) and aponeme (x=x2), where the integrands become infinite. Near perineme, however, we can substitute x=1+ξ and near aponeme we can substitute x=x2(1−ξ), and we can expand the integrands as power series in ξ and integrate term by term. I gather here the following results for the intervals x=1 to x=1+ϵand x=x2−ϵ to x=x2, where ϵ must be chosen to be sufficiently small that ϵ4 is smaller than the precision required.
I1=∫1+ϵ1[v20(1−1/x2)+2w0lnx−(lnx)2]−1/2dx=M(1+13A1ϵ+15B1ϵ2+17C1ϵ3+...)
I2=∫1+ϵ1[v20(1−1/x2)+2w0lnx−(lnx)2]−1/2lnx dx=M(13ϵ+15D1ϵ2+17E1ϵ3+...)
I3=∫1+ϵ1[v20(1−1/x2)+2w0lnx−(lnx)2]−1/2x−2dx=M(1+13F1ϵ+15G1ϵ2+17H1ϵ3+...)
I4=∫x2x2−ϵ[v20(1−1/x2)+2w0lnx−(lnx)2]−1/2dx=N[1+13A2ϵ/x2+15B2(ϵ/x2)2+17C2(ϵ/x2)3+...)
I5=∫x2x2−ϵ[v20(1−1/x2)+2w0lnx−(lnx)2]−1/2lnx dx=I4lnx2−N[13ϵ/x2+15D2(ϵ/x2)2+17E2(ϵ/x2)3+...]
I6=∫x2x2−ϵ[v20(1−1/x2)+2w0lnx−(lnx)2]−1/2x−2dx=N[1+13F2ϵ/x2+15G2(ϵ/x2)2+17H2(ϵ/x2)3+...]/x22
The constants are defined as follows.
M=(2ϵv20+w0)1/2
N=(2ϵx2lnx2−(v0/x2)2−w0)1/2
a1=−3v20+w0+12(v20+w0)
b1=4v20+23w0+12(v20+w0)
c1=−5v20+12w0+11122(v20+w0)
a2=3(v0/x2)2+w0−lnx2+12((v0/x2)2+w0−lnx2)
b2=4(v0/x2)2+23w0−lnx2+12((v0/x2)2+w0−lnx2)
c2=5(v0/x2)2+12w0−12lnx2+11122((v0/x2)2+w0−lnx2)
An=−12an
Bn=−12bn+38a2n
Cn=−12cn+34anbn−516a3n
Dn=An+12(−1)n
En=Bn+12(−1)nAn+13
Fn=An+2(−1)n
Gn=Bn+2(−1)nAn+3
Hn=Cn+2(−1)nBn+3An+4(−1)n
n=1,2