6.3: Typical Examples
- Page ID
- 31980
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Example 1
\[\begin{equation}
\begin{aligned}
K^{\prime}=H K H, \quad H=& \exp \left(\frac{\mu}{2} \hat{h} \cdot \vec{\sigma}\right) \\
\vec{k}=\vec{k}_{\|}+\vec{k}_{\perp} \quad \vec{k}_{\|}=(\vec{k} \cdot \hat{h}) \hat{h}
\end{aligned}
\end{equation}\label{1}\]
By using (6a) and (7b):
\[\begin{equation}
\begin{array}{r}
\vec{k}_{\|} \cdot \vec{\sigma} H=H \vec{k}_{\|} \cdot \vec{\sigma}, \quad \vec{k}_{\perp} \cdot \vec{\sigma} H=H^{-1} \vec{k}_{\perp} \cdot \vec{\sigma} \\
\vec{k}_{\|}^{\prime}=\vec{k}_{\|}=k \hat{h}
\end{array}
\end{equation}\label{2}\]
\[\begin{equation}
\begin{aligned}
\left(k_{0}^{\prime}+\vec{k}_{\|}^{\prime} \cdot \vec{\sigma}\right) &=H^{2}\left(k_{0}+\vec{k}_{\|} \cdot \vec{\sigma}\right) \\
&=(\cosh \mu+\sinh \mu \hat{h} \cdot \vec{\sigma})\left(k_{0}+\vec{k}_{\|} \cdot \vec{\sigma}\right)
\end{aligned}
\end{equation}\label{3}\]
\[\begin{equation}
\begin{array}{l}
k_{0}^{\prime}=k_{0} \cosh \mu+k \sinh \mu \\
k^{\prime}=k_{0} \sinh \mu+k \cosh \mu
\end{array}
\end{equation}\label{4}\]
Example 2
\[\begin{equation}
\begin{aligned}
K^{\prime}=U K U^{-1}, & U=\exp \left(-i \frac{\phi}{2} \hat{u} \cdot \vec{\sigma}\right) \\
\vec{k}=\vec{k}_{\|}+\vec{k}_{\perp} \quad \vec{k}_{\|}=(\vec{k} \cdot \hat{u}) \hat{u}
\end{aligned}
\end{equation}\label{5}\]
\[\vec{k}_{\|} \cdot \vec{\sigma} U^{-1}=U^{-1} \vec{k}_{\|} \cdot \vec{\sigma}, \quad \vec{k}_{\perp} \cdot \vec{\sigma} U^{-1}=U \vec{k}_{\perp} \cdot \vec{\sigma}\label{6}\]
\[\vec{k}_{\|}^{\prime}=\vec{k}_{\|}\label{7}\]
\[\begin{equation}
\begin{aligned}
\vec{k}_{\perp}^{\prime} \cdot \vec{\sigma} &=\left(\cos \frac{\phi}{2} 1-i \sin \frac{\phi}{2} \hat{u} \cdot \vec{\sigma}\right)^{2} \vec{k}_{\perp} \cdot \vec{\sigma} \\
&=(\cos \phi 1-i \sin \phi \hat{u} \cdot \vec{\sigma}) \vec{k}_{\perp} \cdot \vec{\sigma} \\
\vec{k}_{\perp}^{\prime} &=\cos \phi \vec{k}_{\perp}+\sin \phi \hat{u} \times \vec{k}_{\perp}
\end{aligned}
\end{equation}\label{8}\]