Skip to main content
Physics LibreTexts

3.5: The Gaussian Integral

  • Page ID
    34529
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Here’s a famous integral: \[\int_{-\infty}^\infty \; e^{-\gamma x^2} \; dx.\] The integrand is called a Gaussian, or bell curve, and is plotted below. The larger the value of \(\gamma\), the more narrowly-peaked the curve.

    clipboard_e8aefbadc58403d572f8c2cc7ddc82410.png
    Figure \(\PageIndex{1}\)

    The integral was solved by Gauss in a brilliant way. Let \(I(\gamma)\) denote the value of the integral. Then \(I^2\) is just two independent copies of the integral, multiplied together: \[I^2(\gamma) = \left[\int_{-\infty}^\infty dx\; e^{-\gamma x^2}\right] \times \left[\int_{-\infty}^\infty dy\; e^{-\gamma y^2}\right].\] Note that in the second copy of the integral, we have changed the “dummy” label \(x\) (the integration variable) into \(y\), to avoid ambiguity. Now, this becomes a two-dimensional integral, taken over the entire 2D plane: \[I^2(\gamma) = \int_{-\infty}^\infty dx\, \int_{-\infty}^\infty dy \; e^{-\gamma (x^2+y^2)}.\] Next, change from Cartesian to polar coordinates: \[I^2(\gamma) = \int_{0}^\infty dr\, r \int_{0}^{2\pi} d\phi \; e^{-\gamma r^2} = \left[ \int_{0}^\infty dr\, r \, e^{-\gamma r^2}\right] \times \left[\int_{0}^{2\pi} d\phi \right] = \frac{1}{2\gamma} \cdot 2\pi.\] By taking the square root, we arrive at the result \[I(\gamma) = \int_{-\infty}^\infty dx \; e^{-\gamma x^2} = \sqrt{\frac{\pi}{\gamma}}.\]


    This page titled 3.5: The Gaussian Integral is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.