3.6: Differentiating Under the Integral Sign
- Page ID
- 34530
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In the previous section, we noted that if an integrand contains a parameter (denoted \(\gamma\)) which is independent of the integration variable (denoted \(x\)), then the definite integral can itself be regarded as a function of \(\gamma\). It can then be shown that taking the derivative of the definite integral with respect to \(\gamma\) is equivalent to taking the partial derivative of the integrand: \[\frac{d}{d\gamma} \, \left[\int_a^b dx\; f(x,\gamma)\right] = \int_a^b dx \; \frac{\partial f}{\partial \gamma}(x,\gamma).\]
This operation, called differentiating under the integral sign, was first used by Leibniz, one of the inventors of calculus. It can be applied as a technique for solving integrals, popularized by Richard Feynman in his book Surely You’re Joking, Mr. Feynman!.
Here is the method. Given a definite integral \(I_0\):
- Come up with a way to generalize the integrand, by introducing a parameter \(\gamma\), such that the generalized integral becomes a function \(I(\gamma)\) which reduces to the original integral \(I_0\) for a particular parameter value, say \(\gamma = \gamma_0\).
- Differentiate under the integral sign. If you have chosen the generalization right, the resulting integral will be easier to solve, so...
- Solve the integral to obtain \(I'(\gamma)\).
- Integrate \(I'\) over \(\gamma\) to obtain the desired integral \(I(\gamma)\), and evaluate it at \(\gamma_0\) to obtain the desired integral \(I_0\).
An example is helpful for demonstrating this procedure. Consider the integral \[\int_{0}^\infty dx \; \frac{\sin(x)}{x}.\] First, (i) we generalize the integral as follows (we’ll soon see why): \[I(\gamma) = \int_{0}^\infty dx \; \frac{\sin(x)}{x}\, e^{-\gamma x}.\] The desired integral is \(I(0)\). Next, (ii) differentiating under the integral gives \[I'(\gamma) = - \int_{0}^\infty dx \; \sin(x)\, e^{-\gamma x}.\] Taking the partial derivative of the integrand with respect to \(\gamma\) brought down a factor of \(-x\), cancelling out the troublesome denominator. Now, (iii) we solve the new integral, which can be done by integrating by parts twice: \[\begin{align} I'(\gamma) &= \left[\cos(x)\,e^{-\gamma x}\right]_0^\infty + \gamma \int_{0}^\infty dx \; \cos(x)\, e^{-\gamma x} \\ &= -1 + \gamma \left[\sin(x)\,e^{-\gamma x}\right]_0^\infty + \gamma^2 \int_{0}^\infty dx \; \sin(x)\, e^{-\gamma x} \\ &= -1 - \gamma^2 I'(\gamma).\end{align}\] Hence, \[I'(\gamma) = - \frac{1}{1+\gamma^2}.\] Finally, (iv) we need to integrate this over \(\gamma\). But we already saw how to do this particular integral in Section 3.4, and the result is \[I(\gamma) = A - \tan^{-1}(\gamma),\] where \(A\) is a constant of integration. When \(\gamma \rightarrow \infty\), the integral must vanish, which implies that \(A = \tan^{-1}(+\infty) = \pi/2\). Finally, we arrive at the result \[\int_{0}^\infty dx \; \frac{\sin(x)}{x} = I(0) = \frac{\pi}{2}.\] When we discuss contour integration in Chapter 9, we will see a more straightforward way to do this integral.