Skip to main content
\(\require{cancel}\)
Physics LibreTexts

8: Sparse Matrices

  • Page ID
    34845
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    A sparse matrix is a matrix in which most of the entries are zero. Such matrices are very commonly encountered in finite-difference equations. For example, when we discretized the 1D Schrödinger wave equation with Dirichlet boundary conditions, we saw that the Hamiltonian matrix had the tridiagonal form

    \[\mathbf{H} = -\frac{1}{2h^2} \begin{bmatrix} -2 & 1 \\ 1 & -2 & \ddots \\ & \ddots & \ddots & 1 \\ & & 1 & -2\end{bmatrix} + \begin{bmatrix}V_0 \\ & V_1 \\& & \ddots \\ & & & V_{N-1}\end{bmatrix}.\]

    Hence, if there are \(N\) diagonalization points, the Hamiltonian matrix has a total of \(N^{2}\) entries, but only \(O(N)\) of these entries are non-zero.


    8: Sparse Matrices is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?