Skip to main content
Physics LibreTexts

5: Nuclear Structure

  • Page ID
    25723
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 5.1: Characteristics of the Nuclear Force
      In order to study the nuclear structure we need to know the constituents of nuclei (the nucleons, that is, protons and neutrons) and treat them as QM objects. From the point of view of QM as we studied until now, we want first to know what is the state of the system (at equilibrium). Thus we want to solve the time-independent Schrödinger equation. This will give us the energy levels of the nuclei.
    • 5.2: The Deuteron
      We start with the simplest problem, a nucleus formed by just one neutron and one proton: the deuteron. We will at first neglect the spins of these two particles and solve the energy eigenvalue problem (time-independent Schrödinger equation) for a bound p-n system.
    • 5.3: Nuclear Models
      Starting from a microscopic description of the nucleus constituents, nuclear scientists developed some models describing the nucleus. These models need to yield results that agree with the already known nuclear properties and be able to predict new properties that can be measured in experiments. We are now going to review some of these models.


    This page titled 5: Nuclear Structure is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paola Cappellaro (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.