# 7.3: Total Angular Momentum

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

In general, a particle may have both spin and orbital angular momentum. Since L and S have the same dimensions, we can ask what is the total angular momentum J of the particle. We write this as

$\mathbf{J}=\mathbf{L}+\mathbf{S} \equiv \mathbf{L} \otimes \mathbb{I}+\mathbb{I} \otimes \mathbf{S},\tag{7.46}$

which emphasizes that orbital and spin angular momentum are described in distinct Hilbert spaces.

Since $$\left[L_{i}, S_{j}\right]=0$$, we have

\begin{aligned} \left[J_{i}, J_{j}\right] &=\left[L_{i}+S_{i}, L_{j}+S_{j}\right]=\left[L_{i}, L_{j}\right]+\left[S_{i}, S_{j}\right] \\ &=i \hbar \epsilon_{i j k} L_{k}+i \hbar \epsilon_{i j k} S_{k}=i \hbar \epsilon_{i j k}\left(L_{k}+S_{k}\right) \\ &=i \hbar \epsilon_{i j k} J_{k} \end{aligned}\tag{7.47}

In other words, J obeys the same algebra as L and S, and we can immediately carry over the structure of the eigenvalues and eigenvectors from L and S.

In addition, L and S must be added as vectors. However, only one of the components of the total angular momentum can be sharp (i.e., having a definite value). Recall that $$l$$ and $$s$$ are magnitudes of the orbital and spin angular momentum, respectively. We can determine the extremal values of J, denoted by $$\pm j$$, by adding and subtracting the spin from the orbital angular momentum, as shown in Figure 3:

$|l-s| \leq j \leq l+s.\tag{7.48}$

For example, when $$l=1$$ and $$s=\frac{1}{2}$$, the possible values of $$j$$ are $$j=\frac{1}{2}$$ and $$j=\frac{3}{2}$$.

The commuting operators for J are, first of all, $$\mathbf{J}^{2}$$ and $$J_{z}$$ as we expect from the algebra, but also the operators $$\mathbf{L}^{2}$$ and $$\mathbf{S}^{2}$$. You may think that $$S_{z}$$ and $$L_{z}$$ also commute with these operators, but that it not the case:

$\left[\mathbf{J}^{2}, L_{z}\right]=\left[(\mathbf{L}+\mathbf{S})^{2}, L_{z}\right]=\left[\mathbf{L}^{2}+2 \mathbf{L} \cdot \mathbf{S}+\mathbf{S}^{2}, L_{z}\right]=2\left[\mathbf{L}, L_{z}\right] \cdot \mathbf{S} \neq 0\tag{7.49}$

We can construct a full basis for total angular momentum in terms of $$\mathbf{J}^{2}$$ and $$J_{z}$$, as before:

$\mathbf{J}^{2}\left|j, m_{j}\right\rangle=\hbar^{2} j(j+1)\left|j, m_{j}\right\rangle \text { and } J_{z}\left|j, m_{j}\right\rangle=m_{j} \hbar\left|j, m_{j}\right\rangle.\tag{7.50}$

Alternatively, we can construct spin and orbital angular momentum eigenstates directly as a tensor product of the eigenstates

$\mathbf{L}^{2}|l, m\rangle\left|s, m_{s}\right\rangle=\hbar^{2} l(l+1)|l, m\rangle\left|s, m_{s}\right\rangle \quad \text { and } \quad L_{z}|l, m\rangle\left|s, m_{s}\right\rangle=m \hbar|l, m\rangle\left|s, m_{s}\right\rangle,\tag{7.51}$

and

$\mathbf{S}^{2}|l, m\rangle\left|s, m_{s}\right\rangle=\hbar^{2} s(s+1)|l, m\rangle\left|s, m_{s}\right\rangle \quad \text { and } \quad S_{z}|l, m\rangle\left|s, m_{s}\right\rangle=m_{s} \hbar|l, m\rangle\left|s, m_{s}\right\rangle.\tag{7.52}$

Since the $$L_{z}$$ and $$S_{z}$$ do not commute with $$\mathbf{J}^{2}$$, the states $$\left|j, m_{j}\right\rangle$$ are not the same as the states $$|l, m\rangle\left|s, m_{s}\right\rangle$$.

This page titled 7.3: Total Angular Momentum is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pieter Kok via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.