# 13.5: The Simple Harmonic Oscillator

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

One important potential energy function is the Simple Harmonic Oscillator, or SHO. This is the potential energy of a spring (so long as you don’t stretch of squish the spring too much). It also turns out to be a decent approximation, at least for lower energy levels, for a number of quantum systems. One such system is the vibrational energy states of a Hydrogen molecule $$H_{2}$$. The form of this potential, in one dimension, is:

$V(x)=\frac{1}{2} m \omega^{2} x^{2}\tag{13.9}$

Here, $$m$$ is the mass of the particle moving in the potential. $$\omega$$ is the “natural frequency of oscillation” for the potential; for a classical spring, it would correspond to $$2 \pi / T$$, where $$T$$ is the period of oscillations. (Of course, for a classical spring, the system could also have any energy!)

The solution to the one dimensional Schrödinger equation for this potential gives the following energies for the energy eigenstates:

$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega\tag{13.10}$

where $$n$$ is an integer 0, 1, 2, . . .. As written, this potential is an infinitely high potential $$(V(x)$$ just keeps going up as $$x$$ gets farther and farther from 0.) As such, there are an infinite number of allowed energy levels. Of course, as an approximation to a real physical system, usually the approximation will get worse and worse as $$x$$ gets farther and farther from 0, which means that the solutions less and less of a good approximation to the real energy system for higher and higher energy levels.

This page titled 13.5: The Simple Harmonic Oscillator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pieter Kok via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.