Skip to main content
Physics LibreTexts

13.5: The Simple Harmonic Oscillator

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    One important potential energy function is the Simple Harmonic Oscillator, or SHO. This is the potential energy of a spring (so long as you don’t stretch of squish the spring too much). It also turns out to be a decent approximation, at least for lower energy levels, for a number of quantum systems. One such system is the vibrational energy states of a Hydrogen molecule \(H_{2}\). The form of this potential, in one dimension, is:

    \[V(x)=\frac{1}{2} m \omega^{2} x^{2}\tag{13.9}\]

    Here, \(m\) is the mass of the particle moving in the potential. \(\omega\) is the “natural frequency of oscillation” for the potential; for a classical spring, it would correspond to \(2 \pi / T\), where \(T\) is the period of oscillations. (Of course, for a classical spring, the system could also have any energy!)

    The solution to the one dimensional Schrödinger equation for this potential gives the following energies for the energy eigenstates:

    \[E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega\tag{13.10}\]

    where \(n\) is an integer 0, 1, 2, . . .. As written, this potential is an infinitely high potential \((V(x)\) just keeps going up as \(x\) gets farther and farther from 0.) As such, there are an infinite number of allowed energy levels. Of course, as an approximation to a real physical system, usually the approximation will get worse and worse as \(x\) gets farther and farther from 0, which means that the solutions less and less of a good approximation to the real energy system for higher and higher energy levels.

    This page titled 13.5: The Simple Harmonic Oscillator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pieter Kok via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.