# 2.3: Representation of Waves via Complex Functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In mathematics, the symbol $${\rm i}$$ is conventionally used to represent the square-root of minus one: in other words, one of the solutions of $${\rm i}^{\,2} = -1$$. Now, a real number, $$x$$ (say), can take any value in a continuum of different values lying between $$-\infty$$ and $$+\infty$$. On the other hand, an imaginary number takes the general form $${\rm i}\,y$$, where $$y$$ is a real number. It follows that the square of a real number is a positive real number, whereas the square of an imaginary number is a negative real number. In addition, a general complex number is written $z = x + {\rm i}\,y,$ where $$x$$ and $$y$$ are real numbers. In fact, $$x$$ is termed the real part of $$z$$, and $$y$$ the imaginary part of $$z$$. This is written mathematically as $$x={\rm Re}(z)$$ and $$y={\rm Im}(z)$$. Finally, the complex conjugate of $$z$$ is defined $$z^\ast = x-{\rm i}\,y$$.

Just as we can visualize a real number as a point lying on an infinite straight-line, we can visualize a complex number as a point lying in an infinite plane. The coordinates of the point in question are the real and imaginary parts of the number: that is, $$z\equiv (x,\,y)$$. This idea is illustrated in Figure [f13.2]. The distance, $$r=(x^{\,2}+y^{\,2})^{1/2}$$, of the representative point from the origin is termed the modulus of the corresponding complex number, $$z$$. This is written mathematically as $$|z|=(x^{\,2}+y^{\,2})^{1/2}$$. Incidentally, it follows that $$z\,z^\ast = x^{\,2} + y^{\,2}=|z|^{\,2}$$. The angle, $$\theta=\tan^{-1}(y/x)$$, that the straight-line joining the representative point to the origin subtends with the real axis is termed the argument of the corresponding complex number, $$z$$. This is written mathematically as $${\rm arg}(z)=\tan^{-1}(y/x)$$. It follows from standard trigonometry that $$x=r\,\cos\theta$$, and $$y=r\,\sin\theta$$. Hence, $$z= r\,\cos\theta+ {\rm i}\,r\sin\theta$$.

Figure 3: Representation of a complex number as a point in a plane.

Complex numbers are often used to represent wavefunctions. All such representations depend ultimately on a fundamental mathematical identity, known as Euler’s theorem , that takes the form ${\rm e}^{\,{\rm i}\,\phi} \equiv \cos\phi + {\rm i}\,\sin\phi,$ where $$\phi$$ is a real number. Incidentally, given that $$z=r\,\cos\theta + {\rm i}\,r\,\sin\theta= r\,(\cos\theta+{\rm i}\,\sin\theta)$$, where $$z$$ is a general complex number, $$r=|z|$$ its modulus, and $$\theta={\rm arg}(z)$$ its argument, it follows from Euler’s theorem that any complex number, $$z$$, can be written $z = r\,{\rm e}^{\,{\rm i}\,\theta},$ where $$r=|z|$$ and $$\theta={\rm arg}(z)$$ are real numbers.

A one-dimensional wavefunction takes the general form

$\label{e12.8} \psi(x,t) = A\,\cos(k\,x-\omega\,t+\varphi),$ where $$A$$ is the wave amplitude, $$k$$ the wavenumber, $$\omega$$ the angular frequency, and $$\varphi$$ the phase angle. Consider the complex wavefunction

$\label{e12.10} \psi(x,t) = \psi_0\,{\rm e}^{\,{\rm i}\,(k\,x-\omega\,t)},$ where $$\psi_0$$ is a complex constant. We can write $\psi_0 = A\,{\rm e}^{\,{\rm i}\,\varphi},$ where $$A$$ is the modulus, and $$\varphi$$ the argument, of $$\psi_0$$. Hence, we deduce that \begin{aligned} {\rm Re}\left[\psi_0\,{\rm e}^{\,{\rm i}\,(k\,x-\omega\,t)}\right] &= {\rm Re}\left[A\,{\rm e}^{\,{\rm i}\,\varphi}\,{\rm e}^{\,{\rm i}\,(k\,x-\omega\,t)}\right]={\rm Re}\left[A\,{\rm e}^{\,{\rm i}\,(k\,x-\omega\,t+\varphi)}\right]=A\,{\rm Re}\left[{\rm e}^{\,{\rm i}\,(k\,x-\omega\,t+\varphi)}\right].\end{aligned} Thus, it follows from Euler’s theorem, and Equation (2.3.4), that ${\rm Re}\left[\psi_0\,{\rm e}^{\,{\rm i}\,(k\,x-\omega\,t)}\right] =A\,\cos(k\,x-\omega\,t+\varphi)=\psi(x,t).$ In other words, a general one-dimensional real wavefunction, (2.3.4), can be represented as the real part of a complex wavefunction of the form (2.3.5). For ease of notation, the “take the real part” aspect of the previous expression is usually omitted, and our general one-dimension wavefunction is simply written

$\label{e12.13} \psi(x,t) = \psi_0\,{\rm e}^{\,{\rm i}\,(k\,x-\omega\,t)}.$ The main advantage of the complex representation, (2.3.8), over the more straightforward real representation, (2.3.4), is that the former enables us to combine the amplitude, $$A$$, and the phase angle, $$\varphi$$, of the wavefunction into a single complex amplitude, $$\psi_0$$. Finally, the three-dimensional generalization of the previous expression is $\psi({\bf r},t) = \psi_0\,{\rm e}^{\,{\rm i}\,({\bf k}\cdot{\bf r}-\omega\,t)},$ where $${\bf k}$$ is the wavevector.

## Contributors and Attributions

• Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

$$\newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}$$ $$\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}$$ $$\newcommand {\btau}{\mbox{\boldmath\tau}}$$ $$\newcommand {\bmu}{\mbox{\boldmath\mu}}$$ $$\newcommand {\bsigma}{\mbox{\boldmath\sigma}}$$ $$\newcommand {\bOmega}{\mbox{\boldmath\Omega}}$$ $$\newcommand {\bomega}{\mbox{\boldmath\omega}}$$ $$\newcommand {\bepsilon}{\mbox{\boldmath\epsilon}}$$

This page titled 2.3: Representation of Waves via Complex Functions is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.