Skip to main content
\(\require{cancel}\)
Physics LibreTexts

8: Central Potentials

  • Page ID
    15777
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    In this chapter, we shall investigate the interaction of a non-relativistic particle of mass \(m\) and energy \(E\) with various so-called central potentials, \(V(r)\), where \(r=(x^{\,2}+y^{\,2}+z^{\,2})^{1/2}\) is the radial distance from the origin. It is, of course, most convenient to work in spherical coordinates—\(r\), \(\theta\), \(\phi\)—during such an investigation. (See Section [s8.3].) Thus, we shall be searching for stationary wavefunctions, \(\psi(r,\theta,\phi)\), that satisfy the time-independent Schrödinger equation (see Section [sstat]) \[\label{e9.1} H\,\psi = E\,\psi,\] where the Hamiltonian takes the standard non-relativistic form \[\label{e9.2} H = \frac{p^{\,2}}{2\,m} + V(r).\]


    8: Central Potentials is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?