Skip to main content
Physics LibreTexts

8.E: Central Potentials (Exercises)

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. A particle of mass \(m\) is placed in a finite spherical well: \begin{equation}V(r)=\left\{\begin{array}{ll}
      -V_{0} & \text { for } r \leq a \\
      0 & \text { for } r>a
      \end{array}\right.\end{equation} with \(V_0>0\) and \(a>0\). Find the ground-state by solving the radial equation with \(l=0\). Show that there is no ground-state if \(V_0\,a^{\,2}< \pi^{\,2}\,\hbar^{\,2}/(8\,m)\).
    2. Consider a particle of mass \(m\) in the three-dimensional harmonic oscillator potential \(V(r)=(1/2)\,m\,\omega^{\,2}\,r^{\,2}\). Solve the problem by separation of variables in spherical coordinates, and, hence, determine the energy eigenvalues of the system.
    3. The normalized wavefunction for the ground-state of a hydrogen-like atom (neutral hydrogen, \({\rm He}^+\), \({\rm Li}^{++}\), et cetera.) with nuclear charge \(Z\,e\) has the form \[\psi = A\,\exp(-\beta\,r),\] where \(A\) and \(\beta\) are constants, and \(r\) is the distance between the nucleus and the electron. Show the following:
      1. \(A^2=\beta^{\,3}/\pi\).
      2. \(\beta = Z/a_0\), where \(a_0=(\hbar^{\,2}/m_e)\,(4\pi\,\epsilon_0/e^{\,2})\).
      3. The energy is \(E=-Z^{\,2}\,E_0\) where \(E_0 = (m_e/2\,\hbar^{\,2})\,(e^{\,2}/4\pi\,\epsilon_0)^2\).
      4. The expectation values of the potential and kinetic energies are \(2\,E\) and \(-E\), respectively.
      5. The expectation value of \(r\) is \((3/2)\,(a_0/Z)\).
      6. The most probable value of \(r\) is \(a_0/Z\).
    4. An atom of tritium is in its ground-state. Suddenly the nucleus decays into a helium nucleus, via the emission of a fast electron that leaves the atom without perturbing the extranuclear electron, Find the probability that the resulting \({\rm He}^+\) ion will be left in an \(n=1\), \(l=0\) state. Find the probability that it will be left in a \(n=2\), \(l=0\) state. What is the probability that the ion will be left in an \(l>0\) state?
    5. Calculate the wavelengths of the photons emitted from the \(n=2\), \(l=1\) to \(n=1\), \(l=0\) transition in hydrogen, deuterium, and positronium.
    6. To conserve linear momentum, an atom emitting a photon must recoil, which means that not all of the energy made available in the downward jump goes to the photon. Find a hydrogen atom’s recoil energy when it emits a photon in an \(n=2\) to \(n=1\) transition. What fraction of the transition energy is the recoil energy?

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 8.E: Central Potentials (Exercises) is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?